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Introduction

Contexte

Le terme générique Logiciel malveillant, ou “malware” en anglais, désigne un logiciel
développé dans l’intention de nuire à un système ou à des personnes. Ce type de logiciels
a énormément évolué en une décennie, passant du vol de données ou de coordonnées
bancaires [IOA12] à des attaques programmées, commanditées et développées par des
états ou organisations à des fins géopolitiques [Lan13; USC14]. Le coût induit par ce genre
de menaces rend de plus en plus important et critique la mise en œuvre de protections. La
première étape consiste à analyser et comprendre le fonctionnement de ce type de logiciels.
Le code source n’étant pas disponible, des techniques d’analyses au niveau binaire doivent
être développées. Malheureusement, ces programmes mettent en œuvre des techniques
visant à ralentir la compréhension par l’analyste ou à gêner des algorithmes automatiques.
Une de ces protections, l’obfuscation, vise à cacher le comportement ou la structure d’un
programme. Ainsi, cette thèse a pour but d’étudier et de développer des algorithmes
robustes de détection et de suppression d’obfuscation.

Défis Scientifiques

Le but de cette thèse est de fournir des algorithmes d’analyse efficaces de détection de
code obscurci au niveau binaire. L’analyse binaire est reconnue plus difficile que l’analyse
de code source pour plusieurs raisons : la distinction entre code et donnée n’est pas
triviale. De plus, le graphe de flot de contrôle n’est pas forcément disponible [BHV11;
BR10; MM16], l’identification des fonctions du programme n’est pas aisée et les données
ne sont pas typées comme elles le seraient sur du code source. Notons enfin que la
grande diversité d’architectures complique la création d’outils d’analyse. Effectuer ce
genre d’analyses sur des programmes obscurcis est donc d’autant plus dur que ceux-ci
mettent en œuvre des contre-mesures pour les contourner. Les deux principaux défis
scientifiques sont :

• Comment faire des algorithmes robustes qui passent à l’échelle sur du code ob-
scurci ?,
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• Comment localiser l’obfuscation et l’enlever pour rendre le code plus exploitable pour
l’analyste ?

Répondre à ces deux questions permettrait de grandes avancées dans le domaine de
l’analyse de virus.

Contributions
Cette thèse s’inspire et prend racine dans les méthodes formelles initialement dévelop-

pées pour des analyses de sûreté de logiciels critiques. Nous mettons l’accent sur l’Éxecution
Dynamique Symbolique (DSE) [CS13] théoriquement plus adaptée pour des questions
d’obfuscation de par sa grande robustesse. Nos quatre principales contributions sont
listées ci-dessous.

Contribution #1 Nous proposons deux variantes du DSE adaptées à l’obfuscation.

• la gestion des concrétisations et des symbolisations via un langage de règle CSml
intégré dans le calcul du prédicat de chemin permettant de définir des politiques.
Cela permet un réglage fin de la correction et de la complétude;

• une variante de l’algorithme de DSE mais fonctionnant en arrière et de manière
bornée bb-dse. Cet algorithme permet la résolution de certains problèmes d’obfus-
cation.

Contribution #2 Les algorithmes ont été implémentés dans différents outils, Bin-
sec/se, Pinsec et Idasec puis testés sur des exemples concrets. Ces trois outils sont re-
spectivement le moteur d’exécution symbolique, le moteur d’instrumentation dynamique
et un plugin IDA pour l’exploitation des données. En particulier Binsec/se intègre
différentes optimisations novatrices en terme de DSE dont la plus notable est le STMC-
Read-over-Write permettant une gestion optimisée des lectures/écritures en mémoire. Ces
outils ont été testés avec succès aussi bien sur des malware Windows que des binaires Linux
tels que les coreutils.

Contribution #3 En sus, trois combinaisons d’analyse ont été élaborées afin de répon-
dre à des problématiques annexes telles que le désassemblage ou la détection de vulnéra-
bilités. Les trois combinaisons sont :

• combinaison de désassemblage dynamique et de désassemblage statique contrôlé par
du bb-dse. Le but est de l’appliquer à l’obfuscation afin de fournir un désassemblage
plus précis tirant parti des informations d’obfuscation calculée par le bb-dse,

• détection de Use-After-Free en collaboration avec le laboratoire Vérimag,

• détection de critères de tests infaisables appliquée dans une thématique de test sur
du code source. Cette combinaison se base sur une combinaison entre interpretation
abstraite en avant et calcul de plus faible-précondition (WP).
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Contribution #4 La dernière contribution majeure est l’étude, la formalisation et
l’expérimentation de deux algorithmes de détection d’obfuscation appliqués respective-
ment à deux obfuscations: les prédicats opaques et les corruptions de pile d’appel. Une
validation expérimentale des deux algorithmes a été effectuée avec succès sur un large
échantillon de packers et sur certains malwares comme X-Tunnel. Ce dernier développé
par le groupe APT28/Sednit a pour but l’exfiltration de données et fut connu pour son util-
isation lors du piratage du Comité national démocrate aux Etats-Unis [Alp16]. L’analyse
de ce dernier a mis en évidence la présence de très nombreux prédicats opaques ayant pu
être supprimés grâce à la méthode de détection sus-citée.

État de l’art

Obfuscation
D’un point de vue théorique un obfuscateur est défini par Barak [Bar+12] comme

une transformation O sur un programme P satisfaisant trois propriétés : la fonctionnal-
ité, le ralentissement polynomial et la boite-noire virtuelle. De cette définition découle
l’impossibilité de faire un obfuscateur parfait dans le cas général. Cependant en pratique,
de nombreux obfuscateurs existent. On approchera donc le problème de l’obfuscation
d’un point de vu pragmatique avec la définition donnée par Collberg [CN09]. En effet, il
caractérise une obfuscation à partir de 4 critères : l’efficacité, la puissance, la furtivité et
le coût se referrant à la propriété de ralentissement polynomial.

Code Vs données Une obfuscation affecte généralement soit le flot de contrôle soit
les données d’un programme. Une obfuscation du flot va tenter de brouiller la structure
logique des instructions et des fonctions alors qu’une obfuscation de donnée va essayer
de cacher certaines ressources du programmes comme des chaînes de caractères ou des
constantes. Parmi les obfuscations de contrôle, on peut citer le “code flattening” servant à
applatir le CFG, les obfuscations par signaux et exceptions servant à faire des sauts non-
explicites ou encore le “code overlapping” permettant à deux instructions différentes de
partager certains octets. Parmi les obfuscations de données, on peut citer le chiffrement
des chaînes de caractères ou encore le “mixed-boolean arithmetic” [Zho+07] permettant
notamment de cacher certaines constantes ou clés en les décomposant.

Désobfuscation
Le terme désobfuscation regroupe toute technique visant à contourner ou enlever les

protections sus-citées. Elle peut donc être divisée en deux étapes différentes : la détection
de l’obfuscation et la suppression, cette dernière étape étant potentiellement beaucoup
plus complexe à mettre en œuvre. Basé sur les définitions ci-dessus, voici les trois actions
envisageables une fois la détection effectuée :

• inverser la transformation d’obfuscation (généralement impossible),

• récupérer une information précise dans le code obscurci,
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• simplifier le code obscurci pour faciliter des analyses ultérieures.

Nous orientons nos recherches vers la dernière possibilité, étant donné que le but de cette
thèse est de faciliter l’analyse d’un ingénieur en retro-ingénierie.

État de la technique Dans l’industrie les méthodes employées sont généralement
statiques ou dynamiques et dans la plupart des cas, syntaxiques. Ces approches sont
parfaitement viables mais néanmoins peu résistantes à la combinaison d’obfuscation ou
l’apparition de nouvelles obfuscations. En effet, l’analyse statique est souvent syntaxique
et basée sur des heuristiques. L’analyse dynamique quant à elle, s’effectue généralement
dans une sandbox ou directement manuellement via un debugger.

Méthodes formelles Les approches formelles statiques se basent pour certaines sur
l’interprétation abstraite [Dal+06; Kin12] et visent particulièrement les techniques de
machines virtuelles ou de “code flattening”. Cependant, ces analyses considèrent souvent
le CFG comme disponible et immuable sans aucune auto-modification. Ceci limite donc
beaucoup le domaine d’application. A l’inverse, les approches dynamiques cherchent
à contourner le polymorphisme ou le chiffrement des données [KPY07; Uga+15]. Les
approches dynamiques étant généralement plus lentes, il est parfois difficile de les mettre
en œuvre sur un grand nombre de programmes. Enfin, plusieurs approches symboliques
ont été expérimentées pour traiter différents problèmes d’obfuscation [Bru+07; LPG13;
YD15]. Cette thèse s’inscrit dans cette ligne de recherche et propose des algorithmes
permettant le passage à l’échelle sur du code obscurci, ce qui reste le principal défaut des
techniques sémantiques existantes.

Attaques sur la désobfuscation Une obfuscation tente généralement d’empêcher soit
les techniques d’analyse statique soit les techniques d’analyse dynamique. L’analyse sta-
tique est hautement dépendante du graphe de flot de contrôle (CFG), toute obfuscation le
ciblant est donc potentiellement efficace. L’obfuscation dynamique cherche généralement
à empêcher l’exécution ou le debug du programme dans une machine virtuelle ou un en-
vironnement instrumenté. Enfin très peu d’obfuscations ciblent directement l’exécution
symbolique car la mise en œuvre est difficile. Le concept de “secure triggers” [Fut+06]
exploite généralement la difficulté d’inverser les fonctions de hachage pour protéger leur
code et rendre inefficace toute analyse symbolique.

Exécution Symbolique Dynamique
L’exécution symbolique (SE) est une approche qui, pour un chemin donné dans un pro-

gramme, va calculer un ensemble de relations sous forme d’une formule pour laquelle une
solution est un jeu d’inputs permettant d’emprunter ce chemin [Kin76]. Il est ensuite pos-
sible d’énumérer les chemins pour couvrir et tester tout le programme. L’exécution sym-
bolique dynamique ou encore exécution concolique utilise une exécution concrète (réelle)
afin de déterminer le chemin à calculer. Les avantages sont nombreux : l’exécution est
correcte (faisable en pratique), l’instruction suivante est toujours connue et le dépliage
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des boucles est automatique. Cette approche est donc robuste aux différentes construc-
tions inhérentes au binaire. Néanmoins, l’exécution est sous-approximée et dépendante
des entrées utilisées. L’exploration est donc partielle (incomplète).

Prédicat de chemin Le calcul du prédicat de chemin est la composante essentielle du
DSE. Pour un chemin π, ϕ est un prédicat de chemin de π si pour toute valuation des
entrées t (solution de ϕ), l’exécution de programme P sur t noté P (t) emprunte le chemin
π. Il est correct si toutes les solutions couvrent π et il est complet si tout jeu d’entrées
couvrant π est une solution. Intuitivement, un prédicat de chemin est la conjonction
de toutes les conditions de sauts conditionnels rencontrées sur ce chemin. En DSE, sur
un chemin concret, il est possible de remplacer des valeurs logiques par leurs valeurs
lors de l’exécution afin de simplifier le prédicat de chemin (concrétiser). A l’inverse, il
est aussi possible de symboliser une valeur afin de simuler des valeurs inconnues ou des
effets non-déterministes. Ces deux mécanismes sont un point essentiel pour une analyse
robuste et offrent un compromis entre correction et complétude. La Figure 1 montre
respectivement un programme, le prédicat de chemin associé, le même prédicat où a = 5
a été concrétisé et le même prédicat où x1 a été symbolisé avec un nouveau symbole. Faire
varier les concrétisations et les symbolisations permet d’ajuster et choisir un compromis
entre précision et complétude.

programme prédicat chemin ϕ1 concrétisation ϕ2 symbolisation ϕ3

inputs: a, b a = 5
x := a × b x1 = a× b x1 = 5× b x1 = fresh

x := x + 1 ∧ x2 = x1 + 1 ∧ x2 = x1 + 1 ∧ x2 = x1 + 1
//assert x > 10 ∧ x2 > 10 ∧ x2 > 10 ∧ x2 > 10

Figure 1: Prédicat de chemin, concrétisation et symbolisation

DSE au niveau binaire Toutes les analyses sont développées au niveau binaire sur
un langage intermédiaire Dynamic Bitvector Automata (DBA) [DB15] fournissant une
représentation concise et unifiée des instructions, indépendante du jeu d’instructions
analysé. Chaque instruction assembleur se décompose en une ou plusieurs instructions
DBA encodant la sémantique de l’instruction. DBA comme les autres représentations in-
termédiaires (IR) existantes est sans effet de bord et précis au niveau bit. Les valeurs sont
représentées sous forme de bitvecteurs bv ∈ Bv dont la taille est connue statiquement.
Le cœur du langage est composé de quatre instructions : l’assignation lhs := e, le saut
statique goto l, le saut dynamique goto e et le saut conditionnel ite(c)? goto l ; goto l.
Un lhs est soit une variable v ∈ V ar soit une écriture en mémoire @[ e ]. Une expression
e est définie par e ::= e ♦b e | ♦u e | @[ e ] | v | bv | ⊥ | > respectivement une opération
binaire, une opération unaire, une lecture en mémoire, une variable, une constante de
valeur indéfinie et valeur non-déterministe. L’exécution symbolique dynamique est donc
calculée sur cette représentation intérmédiaire.
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Contribution #1: Amélioration du DSE pour la dé-
sobfuscation

DSE flexible via des politiques de concrétisation/symbolisation

Un des leviers disponibles pour améliorer le passage à l’échelle du calcul de prédicat
de chemin est la modulation des concrétisations et des symbolisations. Alors que les
approches existantes abordent le problème comme un élément mineur de l’implémentation
nous proposons un nouvel algorithme de calcul du prédicat de chemin intégrant un système
de politique de concrétisation/symbolisation permettant de moduler le comportement du
calcul de chemin (cf 1 via un langage de règles [Dav+16a]. Pour une variable donnée,
trois actions sont possibles :

• Concrétiser (C) remplace la valeur logique par la valeur à l’exécution. Cela sous-
approxime le prédicat de chemin mais réduit la complexité de la formule,

• Symboliser (S) remplace la valeur logique par un nouveau symbole (nouvelle vari-
able libre). Cela sur-approxime en généralisant certaines valeurs du prédicat de
chemin et permet donc de simuler des valeurs complètement inconnues (retour de
fonctions, etc),

• Propager (P) calcule la valeur logique sans aucune approximation (comportement
par défaut).

Politique de C/S & CSml Le but est de définir un mécanisme clair et flexible permet-
tant de moduler les concretisations et symbolisations tout en assurant la correction et ce
pour chaque expression de l’exécution. L’idée est de concevoir un langage de spécification
haut-niveau pour les politiques de C/S fournissant les propriétés suivantes:

• un langage et une sémantique claire qui soient simple et concis,

• indépendant vis-à-vis du moteur de DSE,

• possiblité d’encoder toutes les politiques de la litterature.

Cela a été effectué via CSml intégré dans Binsec/se offrant un langage de règles de
C/S. Une règle est de la forme guard ⇒ ρ où guard permet de vérifier si la règle doit
être déclenchée et ρ indique l’action à effectuer dans ce cas ({C,S,P}). Chaque règle
est testée séquentiellement, la première satisfaisant la condition de guard renvoie l’action
associée. Formellement guard est défini par (φloc, φins, φexpr, φΣ) qui sont respectivement
un prédicat sur le point de contrôle, l’instruction, l’expression et l’état mémoire. Ces
différents prédicats permettent de filtrer précisement l’expression sur laquelle effectuer
l’action associée.
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Expérimentations Différentes expérimentations on été effectuées formant la première
évaluation quantitative et systématique des politiques de C/S dans le DSE. Nous avons
évalué différentes politiques issues de la litterature, traitant les accès mémoires de manière
différente. Cinq politiques ont été évaluées sur un total de 169 programmes tirés de
différentes suites de benchs et des coreutils de Linux. Les résultats montrent qu’aucune
politique ne surpasse toutes les autres et qu’en fonction du besoin, le choix de la politique
peut avoir une grande influence. Ces résultats ont validé a posteriori le besoin d’un
méchanisme générique et flexible pour moduler les C/S.

DSE arrière-borné

Le DSE appliqué en avant avec des politiques de C/S permet un meilleur passage
à l’échelle sur de gros prédicats de chemins. Cependant, il est parfois insuffisant voire
inadapté pour résoudre certains problèmes, en particulier les problèmes d’infaisabilité.
On définit ce problème par : Une requête d’infaisabilité vise à vérifier l’infaisabilité de
certains évènements où de certaines configurations dans un environement donné. Par
exemple l’impossibilité de prendre une branche, de sauter à une adresse particulière ou
encore d’avoir une valeur précise dans un registre donné d’une adresse particulière. Le
DSE classique (en avant) vise à résoudre des problèmes de faisabilité (i.e. ateignabilité,
faisabilité de chemin, valeur de registre etc) et ce, afin de générer de nouvelles entrées
satisfaisant le problème à résoudre. Plusieurs problèmatiques d’obfuscation entrent dans
le cadre des problèmes d’infaisabilité (détection de code mort, etc).

bb-dse Le bb-dse [DBM16] est un algorithme de DSE fonctionnant en arrière, et ce, de
manière bornée pour assurer le passage à l’echelle. Il s’agit d’une approche orientée par
les buts dans laquelle l’analyse démarre du point de contrôle de la propriété à prouver et
calcule le prédicat de chemin en arrière un nombre borné k d’instructions. La principale
conséquence du point de vue de la formule est de sur-approximer tous les états possibles,
au-delà de la borne k. Une propriété prouvée insatisfiable sur un sous-chemin k reste donc
insatisfiable sur le sous-chemin k + 1. En effet, l’ajout de contraintes ne peut pas rendre
une formule à nouveau satisfiable pour des raisons de monotonie. La figure 2 illustre le
fonctionnement de l’algorithme. Cet algorithme ne remplace pas le DSE classique mais
le complète pour un certain type de propriétés à prouver.

Formellement le DSE se base sur l’opération post tandis que le bb-dse se base sur
l’opération pre et plus particulièrement sur un nombre borné d’itérations de la fonction
notée pre≤k. La problématique est d’ajuster la borne k afin de limiter le nombre de faux
négatifs ou de faux positifs. Les expérimentations effectuées dans la Contrib#4 démon-
trent l’utilité de l’approche pour certains problèmes d’obfuscation comme les prédicats
opaques ou corruption de pile d’appel.
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pre≤k

ensemble    
chemins

sur-approximés

chemins
perdus 
(lors
du calcul)

post*
(DSE avant)

(DSE arrrière)

Figure 2: schéma prek

Contribution #2: Implémentation

Introduction

Nos algorithmes et techniques ont été implémentés dans trois composants : l’instru-
menteur dynamique (DBI), le moteur de DSE et le solveur de formules. Le schéma
3 montre les interactions entre les différents composants. La résolution de formule est
traditionnellement effectuée par des solveurs SMT ou CP externes tel que Z3 [MB08],
CVC4 [Det+14] ou boolector [NPB15]. Cette thèse a mené à l’implémentation d’une
instrumentation dynamique (Pinsec) et d’un moteur de DSE (Binsec/se). Enfin, un
plugin IDA appelé Idasec a été développé pour l’exploitation des résultats d’analyse et
les opérations de haut niveau.

chemin π
(trace)

DSE

prédicat de chemin φ 
(formule)

DBI Solveur

status &
modèle

nouveaux
“inputs”

Figure 3: Schéma d’interaction des composants d’un DSE

Pinsec est basé sur Pin [Luk+05] permettant l’instrumentation de programme x86.
Pinsec permet d’instrumenter des programmes Linux et Windows afin d’en générer une
trace d’exécution contenant toutes les valeurs des registres et cases mémoire à l’exécution.
Il permet aussi de récupérer les paramètres des fonctions via des “stubs”, de récupérer
ou de patcher à la volée des valeurs arbitraires lors de l’instrumentation ou encore de
communiquer avec le DSE via un protocole d’échange de messages.
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Binsec/se est développé dans la plateforme d’analyse Binsec [DB15] et y apporte
un moteur de DSE [Dav+16b]. Le moteur supporte tous les algorithmes mentionnés ci-
dessus et fournit un grand choix d’options de configuration. Il est notamment possible
de paramétrer la politique de C/S, la convention d’appel, le solveur, les optimisations
sur les formules ou encore le timeout. Les options peuvent notamment être fournies sous
forme d’un fichier de configuration en JSON. Avec cela, n’importe quelle analyse peut
être implémentée via les API fournies. Par ailleurs, Binsec/se peut recevoir et traiter
directement les requêtes par le réseau. En ce qui concerne les solveurs il supporte Z3,
CVC4, boolector et Yices grâce à une intégration boite noire via le format SMTLIB2.

Idasec est développé en Python et s’intègre au désassembleur IDA [Hex16] via son
mécanisme de plugins. Parmi ses fonctions basiques, il permet d’obtenir la mnémonique
d’une instruction, visualiser une trace d’exécution ou encore surligner le chemin emprunté
sur le CFG. Ce plugin peut se comporter comme un intermédiaire entre Pinsec et Binsec
lorsque les analyses sont effectuées à distance en flux continu.

Optimisations des formules
L’optimisation des formules générées est une composante essentielle pour le passage

à l’échelle des analyses et compte parmi les contributions de cette thèse. Les optimisa-
tions présentées ci-dessous ambitionnent une réduction soit en espace soit en temps. Le
gain de temps est privilégié car la contrainte de temps est le principal facteur limitant
en DSE. Parmi les optimisations développées nous distinguons deux categories ; (1) les
optimisations offrant un pré-processing minimal visant à uniformiser les formules générées
ce qui, de manière opportuniste, améliore les performances de certains solveurs et (2) les
optimisations dédiées à la simplification des tableaux.

Optimisations de pré-processing Les différentes optimisations de pré-processing im-
plémentées sont:

• backward pruning, vise à retirer tous les termes d’une formule n’intervenant pas dans
la résolution des contraintes,

• propagation constante, optimisation standard qui sans améliorer significativement le
temps de résolution ou la taille de la formule, produit une forme plus canonique

• rebase, réduit le nombre d’identifiants de variables crées via la réutilisation d’iden-
tifiants plus anciens et la simulation des opérations arithmétiques. Par exemple,
dans le cas esp1 := esp0 − 4; esp2 := esp1 − 4 la variable esp2 est redéfinie par
esp2 := esp0−8. L’avantage est de fournir une base de comparaison commune entre
esp1 et esp0 en les rendant facilement comparables vis-à-vis de esp0.

• prédicats haut-niveau, vise à remplacer des opérations de comparaison bas niveau par
des conditions plus naturelles. Par exemple la condition associée à la comparaison
cmp ecx, 24; jl xx en x86 est ((ecx − 24) <s 0) 6= (ecx{31} 6= 24{31})&&(ecx{31} 6=
(ecx− 24){31}) alors que l’opération de haut niveau est : ecx < 24.
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Optimisations de tableaux Le Read-over-Write est une propriété sur la théorie des
tableaux qui indique que pour un tableau donné il est logiquement équivalent de substituer
la lecture à un index donné par la valeur précédement écrite à ce même index. Effectuer
cette opération permet donc de réduire le nombre de lectures en mémoire. Dans la théorie
des tableaux, l’opération write renvoie un nouveau tableau mis à jour avec la valeur
écrite. Un tableau est donc une suite, une séquence d’écriture dans un tableau initial
vide. Effectuer l’opération de RoW nécessite donc de parcourir linéairement cette chaîne
et ce, pour chaque opération read. La complexité est donc approximativement au pire cas
quadratique en la taille de la chaîne de write. Une des contributions de ma thèse est de
proposer un modèle novateur de représentation des écritures permettant d’effectuer cette
optimisation en temps logarithmique dans le meilleur cas ou identique en complexité à
l’approche classique dans le pire cas. L’efficacité dépend notamment de la politique de
C/S employée vis-à-vis des lectures/écritures en mémoire. Cette thèse compare les deux
approches et met en avant le gain en terme de temps de résolution des formules avec
le store-map RoW. En sus, le memory flattening est une deuxième optimisation sur les
tableaux qui sert à supprimer la théorie des tableaux de la formule lorsque le Read-over-
Write à été suffisamment efficace pour supprimer tous les store et ramener tous les read
sur la mémoire initiale à des indices constants.

Contribution #3: Combinaisons d’analyses

Désassemblage minutieux
Une instruction est authentique ou avérée si lors de l’exécution du programme elle est

exécutée. Un désassembleur est sûr s’il désassemble uniquement des instructions authen-
tiques (et non pas des données). Il est dit complet s’il retrouve toutes les instructions
authentiques du programme. Les trois algorithmes de désassemblage classiques sont:

• le désassemblage récursif suit le flot du programme pour le désassembler. Cette
approche est rapidement limitée par les sauts dynamiques (saut à une valeur connues
seulement à l’exécution);

• le balayage linéaire désassemble séquentiellement chaque octet des sections exécuta-
bles d’un binaire. Le problème de cette approche est le “sur-désassemblage”. En
effet, de nombreux octets de padding ou de données seront décodés comme des
instructions. L’approche n’est donc pas sûre;

• le désassemblage dynamique utilise les branches observées lors d’une exécution pour
déterminer les cibles de saut. Cette méthode est sûre mais incomplète dans la
mesure où une seule exécution est couverte.

Combinaison Le but de la combinaison proposée est d’enrichir un algorithme de désa-
ssemblage dynamique avec un désassemblage statique récursif contrôlé grâce à des in-
formations d’obfuscation calculées par exécution symbolique. L’idée est donc, non pas
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de désassembler le plus d’instructions possibles, mais de désassembler plus justement les
instructions.

Les enrichissements par rapport à un algorithme classique sont les suivants :

• utilisation des valeurs dynamiques pour désassembler les cibles de saut dynamique
(comme pour un désassemblage dynamique),

• utilisation des informations de prédicats opaques pour ne pas désassembler les
branches mortes,

• utilisation des informations de corruption de pile d’appel pour désassembler les cibles
de saut d’un ret corrompu et ne pas désassembler le returnsite d’un call dans
lequel on ne retourne jamais.

Evaluation Les benchmarks effectués visent à évaluer la précision du désassemblage de
la combinaison par rapport aux algorithmes classiques dans les outils dits grand public.
La comparaison est faite avec Objdump fonctionnant en balayage linéaire, IDA mélangeant
désassemblage linéaire et récursif et Binsec en mode récursif. Le tableau 1 montre les
résultats sur cinq binaires obscurcis avec des prédicats opaques. Les résultats montrent
que IDA, Objdump et Binsec (récursif) désassemblent les branches mortes alors que la
combinaison dite minutieuse ne désassemble que les instructions réellement exécutables
et offrant un gain maximum de 32%.

Table 1: Désassemblage “sparse” de prédicats opaques

pas parfait IDA Objdump Binsec gain vs IDA
obf. rec. sparse (sparse)

simple-if 37 185 240 244 240 185 23,23%
huffman 558 3226 3594 3602 3594 3226 10,26%
matrix_multiply 249 854 1075 1080 1075 854 20,67%
bin_search 105 833 1110 1115 1110 833 24,95%
bubble_sort 121 1026 1531 1537 1531 1026 32,98%

Détection de vulnérabilité de Use-After-Free
Introduction Ces travaux ont été effectués en collaboration avec le laboratoire Vérimag
et plus particulièrement Josselin Feist. Cette combinaison a pour but d’étendre les ana-
lyses symboliques développées au niveau binaire mais appliquées à de la détection de
vulnérabilité et plus particulièrement des Use-After-Free (UaF). Cette vulnérabilité per-
met si elle est exploitée, l’exécution arbitraire de code grâce à la réutilisation impropre de
pointeurs préalablement libérés. Cette combinaison s’articule autour d’une analyse sta-
tique par interprétation abstraite visant à extraire un ou plusieurs slice de programmes
contenant les évenements clés d’un UaF c-a-dmalloc,free et use. Ensuite, une couverture
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des chemins est effectuée en DSE sur ces slice afin de détecter la présence d’une vulnéra-
bilité. En complément différentes heuristiques dédiées ont été implémentées afin de guider
l’exploration des chemins de manière plus efficace dans le contexte de la détection d’UaF.
L’analyse statique effectuant l’extraction du slice et les heuristiques de choix de chemins
ont pour but commun de contourner le problème de l’explosion combinatoire des chemins
inhérent à l’exploration des chemins en DSE.

Validation expérimentale Cette combinaison a permis la détection de plusieurs vul-
nérabilités. La plus notable est une vulnérabilité dans la librairie de traitement d’image
JasPer ayant menée à la CVE-2015-5221 [Mit15]. Cette vulnérabilité a mis en évidence
l’utilité de la combinaison dans la mesure où des outils de fuzzing échouent à détecter la
vulnérabilité. Par ailleurs, les heuristiques de guidage pour le DSE réduisent significa-
tivement le temps d’énumération des chemins menant à la détection de la vulnérabilité.

Détection de critères de couverture infaisables [code source]
Introduction Ces travaux de thèse et en particulier les différentes méthodes de com-
binaisons étudiées ont donné lieu à une application dans le domaine du test logiciel au
niveau source. Pour une campagne de test, certains critères de couverture doivent être
satisfaits afin de considérer le logiciel comme testé. Les critères connus sont : la cou-
verture de décision (DC), la couverture de condition (CC) ou encore les conditions de
couverture multiples(MCC). Afin de tester ces critères nous utilisons les labels [Bar+14]
comme formalisme pour encoder ces différents critères de manière générique. Concrète-
ment, au niveau C, un label est une annotation de code traitée ensuite par le moteur de
test afin d’en vérifier la validité.

Problématique Ajoutés automatiquement dans tout le code, certains de ces critères se
trouvent être infaisables de par la structure du programme. Outre la réduction du taux
effectif de couverture, beaucoup de temps est perdu afin d’essayer de couvrir ce critère.
Il est donc important de pouvoir détecter en amont ces différents critères infaisables.

Combinaison Inspiré des combinaisons et techniques précédentes, mes travaux pro-
posent une combinaison avant/arrière permettant la détection des critères de couverture
infaisables. Cette combinaison se base sur une analyse de valeurs (VA) par interprétation
abstraite pour l’analyse en avant et sur du calcul de plus faible précondition (WP) pour
l’analyse en arrière. Le but est de calculer une sur-approximation du programme par VA
afin d’inclure certains des ces invariants comme hypothèse (donc considéré valide) sous
forme de prédicat ACSL [Cuo+12]. Le but est d’améliorer le pouvoir de décision du WP,
et ce, sans aucune annotation supplémentaire. Cette combinaison VA ⊕WP est donc
effectuée en boîte grise grâce à cette communication d’invariants entre VA et WP. Cette
analyse s’effectue en trois étapes: (1) le calcul (une seule fois) de la sur-approximation
des états avec VA, (2) pour tous les prédicats non-valides, l’extraction et ajout comme
hypothèses des invariants relatifs aux variables du prédicat. (3) analyse WP pour vérifier
la validité du prédicat.
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Implémentation Cette analyse est développée dans la plateforme Frama-C qui intègre
deux greffons, Value et WP, permettant respectivement le raisonnement avant et arrière.
La campagne de test est effectuée avec LTest [Bar+14] et Pathcrawler [Wil+05], eux aussi
deux greffons de Frama-C.

Expérimentations Des benchmarks ont été effectués sur 12 fichiers issus de la suite
Siemens et de la suite Verisec. Des critères de couverture usuels tels que la couverture
de branches ou encore la couverture de conditions ont été étudiés et encodés sous forme
de labels. Sur un total de 1270 critères de tests, 121 se sont révélés infaisables avec une
vérification manuelle. En sus, 84 ont été détectés par VA et 73 par WP tandis que la
combinaison des deux a permis d’en détecter 118 soit 98%. De façon intéressante, la
combinaison permet de détecter certains critères que ni VA ni WP ne sont capables de
détecter seuls.

Contribution #4: Évalution expérimentale
L’efficacité des différents algorithmes de DSE développés a été validée expérimentale-

ment sur deux obfuscations différentes et appliquées à deux cas d’utilisation. Les deux
obfuscations traitées sont les prédicats opaques et les corruptions de pile d’appel pour
lesquels deux méthodologies de détection sont formalisées et implémentées. Ces deux al-
gorithmes ont ensuite été évalués expérimentalement sur un large ensemble de packers et
sur le malware X-Tunnel.

Prédicats Opaques
Définition La première obfuscation traitée dans cette thèse est celle basée sur les prédi-
cats opaques (PO). Un PO est une condition s’évaluant toujours à vrai (ou toujours faux)
mais dont cette propriété est difficile à déduire à priori. Cette technique permet notam-
ment de gonfler artificiellement le code d’un programme en ajoutant du code mort dans
les branches mortes.

Taxonomie La première taxonomie des PO fut proposée par Collberg [CTL97] et
présente différentes manières d’encoder des invariants dans les programmes servant ensuite
à la création de PO. Les différents type d’invariants proposés sont :

• Invariants arithmétiques qui utilisent généralement des propriétés d’arithmétique
modulaire pour créer des équations sans solution ou bien toujours vraies. Par exem-
ple, 7y2 − 1 6= x2 est toujours vrai quelques soient les valeurs de x ou y et ce même
avec les overflow possibles sur des entiers machine;

• Invariants de structure de données qui utilisent certaines propriétés des struc-
tures de données pour encoder les prédicats. Par exemple on peut créer un tableau
dont toutes les cases paires sont divisibles par 2 (x mod 2 = 0) ou encore sur une
liste triée où x < x+ 1 est toujours vrai;
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• Invariants sur les pointeurs qui se basent sur la difficulté de faire des analyses
d’alias et donc savoir si deux pointeurs sont équivalents. Toutes les manières sont
bonnes et ce genre d’invariant est facile à créer au niveau source;

• Invariants de concurrence qui se basent sur des invariants créés avec des “race
condition” entre différents threads temporisés de manière adaptée;

• Invariants d’environement qui correspondent à tout invariant lié au système,
typiquement en x86 la pile est alignée donc esp mod 4 = 0 est toujours vrai.

Détection Dans ma thèse, la détection se focalise sur les PO arithmétiques plus large-
ment répandus. Le but est de détecter l’infaisabilité d’une des deux branches d’un prédi-
cat. Le bb-dse est particulièrent adapté à ce genre de problème. Toute la difficulté
consiste à choisir la borne k adaptée pour englober toutes les dépendances du calcul du
prédicat. De par l’aspect dynamique du DSE, une des branches a nécessairement été
prise, il ne reste plus qu’à tester la “prenabilité” de l’autre branche par bb-dse. À noter
que le pre≤k sur une trace teste uniquement un sous-chemin. L’algorithme va donc tester
tout nouveau sous-chemin candidat pour essayer de déterminer l’opacité du prédicat. Si
le chemin est insatisfiable alors le prédicat est opaque; si le chemin est satisfiable alors il
n’est pas possible de statuer dans la mesure où un sous-chemin n’a peut-être pas été testé.
Dans ce contexte, un faux positif est un prédicat faussement identifié comme opaque et
un faux négatif un prédicat opaque non identifié comme tel. A noter que le pre≤k est
incomplet et peut rater des chemins. L’analyse peut donc déclencher des faux positifs et
des faux negatifs (prédicats opaques ratés).

Benchmarks Plusieurs benchmarks ont été effectués. Les benchmarks se basent sur
O-LLVM [Jun+15] fournissant des passes d’obfuscation dans LLVM et visent à tester
l’efficacité de l’analyse en environement contrôlé sur des binaires connus. Pour cela,
tous les coreutils Linux ainsi que 5 binaires de test ont été obfusqués puis analysés.
L’obfuscation intégrant de l’aléa, il fut possible de dériver plusieurs versions obfusquées
d’un même binaire et ce, afin d’obtenir 200 binaires obscurcis. Les benchmarks ont été
effectués avec différentes valeurs de k afin d’évaluer la valeur la plus adaptée. Les résul-
tats ont mis en évidence la valeur k=16 comme étant la valeur optimale, maximisant la
détection des PO tout en limitant les faux positifs (3.17%) et les faux négatifs (0%).

Corruption de pile d’appel
Définition La corruption de pile d’appel désigne l’action de violer l’assertion selon
laquelle une instruction ret retourne à l’instruction suivant le précédant call (appelé
returnsite). Dans ce cas le ret est dit violé/falsifié. Au niveau machine, un ret
est un saut dynamique sur l’adresse en haut de pile. Cette adresse est donc facilement
modifiable afin de brouiller le flot de contrôle et brouiller la détection des bornes de
fonction. L’exemple de violation le plus simple est le pattern push xx; ret qui écrit une
valeur sur la pile puis saute à cette adresse avec le ret.
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Taxonomie Peu de travaux ayant été réalisés à ce sujet, cette thèse propose une tax-
onomie des différents types des violations/corruptions possibles caractérisées par l’aligne-
ment, l’intégrité et la multiplicité. Cette caractérisation permet d’obtenir des indices
quant à la nature de la violation, à savoir, un bug ou une action intentionnelle. Les trois
caractéristiques sont:

• l’intégrité, c-à-d la valeur de retour a-t-elle été modifiée? Autrement dit : y-a-t’il
eu une corruption ? Les statuts sont désignés par [genuine] ou [violated],

• l’alignement, c-à-d le ret retourne-t-il au même offset sur la pile ? Autrement
dit retourne-t-il avec la même valeur pour esp. Les deux statuts possibles sont
[aligned], [disaligned],

• la multiplicité de corruption, plusieurs valeurs de sauts sont-elles possibles ? Les
statuts sont [single] ou [multiple].

Détection La détection se base sur le bb-dse. La différence se situe dans le choix de la
borne k, qui sera ici adapté à la distance entre le ret et le call afin de pouvoir déterminer
si le retour s’effectue à la bonne adresse. Afin de caractériser la corruption trois requêtes
SMT sont effectuées : (1) test de la valeur pushé au call et lue au ret pour détecter la
corruption, (2) comparaison des valeurs de esp pour caractériser l’alignement et (3), test
d’une nouvelle valeur de saut en cas de corruption.

Benchmarks Afin de valider l’approche, un benchmark a été effectué avec Tigress [Col+12]
permettant l’ajout de corruption de pile d’appel avec les patterns push; call; ret; ret et
push; ret. Différents programmes ont été obscurcis de cette manière. Sur 218 ret, 77
étaient légitimes et 141 corrompus. L’analyse a obtenu un taux de détection de 100%
sans aucun faux positifs ni faux négatifs (à relativiser dû à la faible diversité des patterns
inserés).

Évaluation à grande échelle de packers
Binaires analysés Cette étude s’intéresse aux packers qui constituent habituellement,
la première, voire l’unique couche de protection pour beaucoup de codes malveillants.
Bien que les packers puissent être utilisés pour protéger des logiciels légitimes ils sont
tout autant utilisés pour “packer” des virus. Un ensemble de 33 packers open-source
et commerciaux sur Windows sont évalués sur un binaire inoffensif (hostname) agissant
néanmoins comme témoin du bon fonctionnement du packer. Ce benchmark est issu d’une
précédente évaluation effectuée dans la litterature [Bon+15].

Critères d’évaluations Les packers sont évalués sur la base des analyses de prédicats
opaques et de corruptions de pile d’appel. Effectuer l’analyse en boîte noire sans con-
naissance préalable des codes analysés est une manière pertinente de tester l’éfficacité des
analyses sur de véritables programmes obscurcis. À des fins d’évaluation, le nombre de
couches d’auto-modification est aussi enregistré. La trace dynamique générée est limitée
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à dix millions d’instructions. Les packers dont la trace atteignait cette limite n’ont pas
été analysés car ils n’ont pas atteint le payload. L’analyse de prédicats opaques a été
effectuée avec k = 16, et ce choix se base sur les résultats des précédents benchmarks sur
O-LLVM.

Table 2: Expérimentation sur packers

Packers #Tr.len
Obfuscation detectée

Prédicats opaques (k16) Corruption de pile
OK PO To Couvert OK(a/d) Viol(a/d/s)

ACPacker 1.802.554 73 209 0 9 0 (0/0) 45 (42/1/42)
ACProtect v2.0 1.813.598 74 159 0 9 0 (0/0) 48 (45/1/45)
Aspack v2.12 377.349 32 24 0 136 11 (7/0) 6 (1/4/1)
BoxedApp v3.2 / - - - - - -
Crypter v1.12 1.170.108 263 24 0 136 125 (94/0) 78 (0/30/32)
EP Protector v0.3 250 10 1 0 2 4 (2/0) 0 (0/0/0)
Expressor 635.356 42 8 0 39 14 (10/0) 0 (0/0/0)
Petite v2.2 260.025 60 19 0 45 4 (1/0) 0 (0/0/0)
Yoda’s Crypter v1.3 240.900 38 1 0 16 4 (3/0) 9 (0/1/0)

Résultats Le tableau 2 donne les résultats pour quelques-uns des packers analysés.
(a/d/s) signifie aligné, désaligné et single pour la caractérisation des corruptions. Les ré-
sultats montrent que les deux analyses sont robustes et efficaces sur des traces de plusieurs
millions d’instructions. Aussi bien des prédicats opaques que des corruptions de pile
d’appel ont été détectés. Ainsi, plus de 150 prédicats opaques et près de 50 corruptions
de pile d’appel ont été détectées dans ACProtect.

Plus en détail, les résultats permettent de constater que certains packers n’utilisent
aucune des deux obfuscations tel que Expressor, tandis que d’autres comme Crypter
ou ACProtect les utilisent de manière intensive. Une vérification manuelle a permis de
valider la grande majorité des résultats observés. Les résultats laissent aussi à penser
que l’instrumentation dynamique a parfois été déjouée par le packer comme c’est peut-
être le cas pour Molebox ou EP Protector dont la trace est étrangement petite (250
instructions). Par ailleurs, l’analyse de corruption de pile d’appel a permis de détecter
pour certains packers l’instruction ret corrompue effectuant la transition finale entre le
code du packer et le payload. Dans ce cas, ce dernier est systématiquement détecté comme
violé.

Cas d’étude : X-Tunnel
Contexte X-Tunnel est un proxy chiffrant utilisé pour l’exfiltration de données de
machines non-directement reliées à internet. Ce malware a été utilisé lors de différentes
attaques ciblées à visées géopolitiques menées notamment contre des infrastructures de
l’OTAN [Tre14], le parlement Allemand [von15] ou encore le parti démocrate américain
(DNC) [Alp16]. Le groupe derrière ces attaques est dénommé APT28, Sednit ou encore
Sofacy group [CCD16].

xxxii



Contexte d’analyse L’analyse se focalise sur 3 échantillons de X-Tunnel compilés à
plusieurs mois d’intervalle et dont les deux derniers ont la particularité d’être obfusqués.
La nécessité d’analyser les binaires obfusqués est motivée par la question de savoir si de
nouvelles fonctionnalités ont été ajoutées. Le malware se connectant à des serveurs C&C et
attendant des connexions de clients pour effectuer le tunneling, il est préférable d’effectuer
l’analyse de manière complètement statique. De plus, les binaires ne semblent pas utiliser
d’auto-modification. L’ensemble du code, bien qu’obfusqué, est donc disponible. Un
examen rapide du code a révélé la présence de prédicats opaques. Le principal objectif
est de les supprimer afin d’en révéler, éventuellement, de nouvelles fonctionnalités dans
une analyse ultérieure.

Développement de l’analyse L’exécution symbolique est effectuée de façon statique
(SE) ce qui ne change pas l’analyse de prédicats opaques puisque celle-ci est effectuée
de façon complètement symbolique, qui plus est, sur de petits prédicats de chemins (16
instructions). L’analyse développée est guidée par Idasec qui génère des sous-chemins
pour chaque prédicat à tester. Ces chemins sont ensuite envoyés pour résolution à Bin-
sec/se configuré en mode serveur. En fonction du résultat renvoyé, Idasec assure le
marquage des prédicats opaques et surtout des parties de code mort. Afin de rendre les
résultats exploitables, trois traitements ont été implémentés dans Idasec:

• extraction(synthèse) du prédicat opaque haut-niveau (afin de les répertorier),

• identification des instructions fallacieuses servant uniquement à calculer un PO,

• extraction d’un CFG réduit basé sur la suppression du code mort et des instructions
fallacieuses.

Résultats Pour chacun des 2 échantillons obscurcis, l’analyse a duré environ 1h30 pour
environ 35000 prédicats chacun (Core i7-4800MQ 2.7GHz, 16Go RAM). Ce temps inclut
toutes les communications réseaux, la création des chemins et le post-traitement. Les
deux prédicats identifiés sont 7x2 − 1 6= x2 et 2

x2+1 6= y2 + 3. Plus de 30% de toutes
les conditions dans le code ont été identifiées et validées comme opaque. Une évaluation
approximative a permis d’identifier parmi tous les prédicats, 10% de prédicats valides
identifiés comme opaques (faux positifs) et seulement 2.3% de prédicats opaques non
détectés (faux négatifs). L’analyse a permis de supprimer dans chaque échantillon environ
44% du code identifié comme mort ou inutile. La figure 4 montre un exemple de fonction
après extraction du CFG réduit.

En conclusion, l’analyse de prédicats opaques a permis d’élaguer considérablement
les fonctions obfusquées et d’en extraire des représentations non-obfusquées beaucoup
plus compactes. Les deux programmes une fois désobscurcis obtiennent un nombre
d’instructions similaires à la version non-obscurcie. De plus, en vertu de la faible différence
de temps entre chaque version, il est peu probable que de nouvelles fonctionnalitées aient
été ajoutées.
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(a) CFG original (b) CFG marqué (c) CFG extrait

Figure 4: Exemples de CFG avant et après réduction

Conclusion

Résumé des contributions
Variantes du DSE pour la désobfuscation Les principales contributions de ma
thèse sont la formalisation, l’implémentation et le test d’un algorithme de calcul de prédi-
cat de chemin pour le DSE intégrant les concrétisations et les symbolisations de manière
flexible. Ceci est rendu possible via l’élaboration d’un méta-langage CSml permettant
la spécification de politiques. Cette flexibilité a permis de tester et mettre en évidence
l’impact des concrétisations et des symbolisations sur le temps de résolution des prédicats.
Afin d’accentuer ce gain en temps, cette thèse décrit, formalise et implémente différentes
optimisations sur les formules dont la plus notable est le STMC-RoW. Différentes expéri-
mentations ont permis de mettre en évidence la plus-value de ces optimisations sur le
temps de résolution.

L’algorithme de bb-dse est une autre contribution majeure de mes travaux. En effet,
peu d’études ont été effectuées sur le DSE arrière et ses avantages, notamment pour les
problèmes d’infaisabilité. Cette thèse formalise un algorithme robuste et précis permettant
de résoudre ce type de problèmes, appliqué à l’obfuscation. Cet algorithme s’est révelé
très efficace pour la détection de prédicats opaques et la détection de corruption de pile
d’appel. Bien qu’il ne remplace pas le DSE en avant, cet algorithme le complète.

Étude de cas L’obfuscation étant la pierre angulaire de cette thèse, mes travaux pro-
posent deux algorithmes d’identification et de caractérisation pour deux obfuscations, les
prédicats opaques et les corruptions de pile d’appel. Ces algorithmes ont été utilisés avec
succès, aussi bien sur des packers commerciaux que sur des codes malveillants. Ces contri-
butions ont permis de mettre en évidence des phénomènes et des structures inattendues.
Par exemple, le prédicat opaque 2

x2+1 6= y2 + 3 identifié dans X-Tunnel n’avait à notre
connaissance jamais été vu ailleurs. Autre effet inattendu, l’analyse de corruption de pile
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d’appel a permis dans certains cas de mettre en évidence l’instruction précise effectuant
la transition entre le code du packer et le payload, lorsque celui-ci utilise l’instruction ret
pour faire le saut.

Combinaison d’analyses Les combinaisons d’analyses étudiées ont permis de met-
tre en évidence l’intérêt et les bénéfices de certaines combinaisons avant/arrière et ce,
aussi bien sur du code binaire que sur du code source. Dans le cadre de cette thèse, la
combinaison la plus notable est le désassemblage “sparse” qui combine un désassemblage
statique avant avec une exécution symbolique arrière bornée. La combinaison avec le
DSE est d’autant plus efficace qu’elle est intégrée dans l’algorithme et le processus de
désassemblage et non pas comme une passe de post-processing.

Contributions à la communauté Une idée clé est de rendre les algorithmes utilis-
ables en pratique par des ingénieurs en rétro-ingéniérie et utilisables au niveau industriel.
Pour cela, tous les algorithmes ont été développés dans des outils open-source, notam-
ment Pinsec, Binsec/se et Idasec. Ces trois outils fournissent respectivement une
instrumentation dynamique, un moteur d’exécution symbolique et un plugin IDA pour
une exploitation plus aisée des données. Ces travaux ont été présenté dans des con-
férences comme BlackHat Europe 2016 [DB16a] ou bien dédiées à la communauté de la
sécurité [BD16].

Perspectives
Cette thèse ouvre la voie à de nombreuses applications et améliorations comme la

détection d’obfuscations à base de machines virtuelles ou encore la création de signatures
sémantiques du code désobfusqué. Dans ce sens, la prochaine étape clé est d’intégrer
les résultats de désobfuscation dans les travaux d’analyse morphologique basés sur de
l’isomorphisme de graphes, développés au LORIA. Ceci dans le but de calculer des signa-
tures de malwares plus précises et efficaces. Ainsi, cette thèse a montré que des méthodes
formelles telles que le DSE peuvent être employées pour des problématiques de sécurité
en fournissant des analyses sémantiques efficaces pour la retro-ingéniérie et l’analyse de
malwares. Cela ouvre la voie à de futurs algorithmes de détection sémantique des codes
malveillants, potentiellement plus efficaces que les algorithmes actuels.
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Chapter 1

Introduction

1.1 Context

Malware is a generic term grouping all software developed with the intention to harm
and to threaten computer systems or their users. These malicious softwares have moved
from cracking jokes in the late 90’ to mass mailing worms like MyDoom and banking trojans
like Zeus [IOA12] in 2007 to evolve nowadays with ransomwares and government-grade
cyber-espionage tools like Stuxnet or Flame. In this last scenario, malwares are the
cornerstone of stealth and persistent attacks. These advanced attacks generally involve
deception, zero-day exploits, various bots across the globe and a whole ecosystem of
malicious softwares like infected documents, droppers, rootkits or bootkit. The sophisti-
cation of such attacks has grown tremendously the last few years and the collateral costs
it implies for companies become more and more significant. For example, the famous
Stuxnet malware managed to infect a Siemens Programmable Logic Controller (PLC)
used in nuclear centrifuges in the Natanz Iranian nuclear facilities. It presumably de-
stroyed up to 1000 centrifuges amounting for 10% of the total centrifuges assets [Lan13].
Another famous case is the Sony Pictures Entertainment hack in December 2015 that
led to the leak of 100 To of data. Among this data, personal employees information and
four unreleased movies. The direct investigation and remediation costs were evaluated
up to 35M$ and more than 100M$ for the loss of earnings. The usage of a specifically
crafted worm [USC14] made this hack possible. At a smaller scale, this kind of sabotage
and blackmail occurs frequently. It was notably the case for the Hollywood Presbyterian
Medical Center who paid 17K$ to recover data ciphered by a ransomware. A first step
toward preventing these infections and understanding the motivations and the origin of
such attacks is to analyze these malwares at binary-level.

As no source code is usually available for malware, the binary executable should be
analysed directly to understand its behavior and goals. But as this area of research has
grown rapidly leading to the emergence of antivirus companies and incident response
companies, malware authors have also designed some counter-measures. Indeed, they
started to protect their malwares as their main goal is to remain stealth and undetected
as long as possible. Among those protections, obfuscation takes a significant place. It
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embraces any mean aiming at slowing down the analysis of a program, either by an
analyst or an automated algorithm. While it has taken a significant place in the software
protection field like the video-game industry, it is also now widely used in the malware
ecosystem. Thus, addressing obfuscation is one of the main challenges in the malware
analysis process.

My thesis was performed in collaboration with two laboratories. First my hosting lab-
oratory, the Safety and Security Lab of the Commissariat à l’Énergie Atomique et aux
energies alternatives is specialized in formal methods for software analysis. It is most
notably known for its open-source C software analyzer Frama-C [Cuo+12]. Secondly, the
“Laboratoire de Haute Sécurité (LHS)” of LORIA Nancy focusing on virus analysis, dy-
namic analysis and notoriously known for its morphological malware signature technology.
My whole thesis takes place in an Agence Nationale de la Recherche (ANR) project called
Binsec aiming at developing a Binary Analysis platform geared for software security. The
project is composed of the CEA, Irisa, LORIA, Vérimag and Airbus Group.

1.2 Research challenges

The first challenge to address toward analyzing malware is to analyze programs at
binary-level. Despite the fact that analyzing binary programs helps avoiding some uncer-
tainty about the compilation process [BR10] and is independent from the source language,
it also raises some other challenges [BHV11; BR10]. Indeed, at binary-level there is no
clear distinction between code and data. Furthermore, all the information available in
the source code, like function bounds, function parameters and the control flow graph is
not available. Moreover, there is no high-level typing especially for the memory which is
seen as a flat untyped array. Thus, making formal and reliable algorithm is a challeng-
ing task [MM16]. Finally, the large diversity of processor architectures (x86,ARM, MIPS..)
makes the modeling of the binary instruction a tedious task. We solely in this thesis on
x86 architectures as it is the most widespread architecture for desktop computers and by
consequence for malwares.

Performing such analyses on malwares is even more challenging as they usually make use
of multiple anti-analysis tricks. An inherent goal of obfuscation is to make the behavior
of the program less understandable both for the analyst and automated algorithms by
swelling the code size and shadowing the real behavior at the same time. Since my thesis
focuses on real world malwares, the first research challenge is:

RC1: How to make analysis algorithms scale on real-world obfuscated malwares ?

Dealing with obfuscation can be considered as a two step process. First, it is required
to detect the obfuscation with reliable algorithms. Detecting obfuscation is characterized
by the ability to locate obfuscation and to differenciate what is part of the obfuscation
and what is part of the original program, the payload. Once this step is achieved a second
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phase consists in thwarting the obfuscation or providing a non-obfuscated representation
of the program. This lead to the second research challenge:
RC2: How to locate and how to remove obfuscation ?

In this context, my thesis focuses on Dynamic Symbolic Execution (DSE) [SMA05;
Wil+05] (a.k.a concolic) to detect different obfuscations techniques via generic algorithms.
DSE provides good promising properties to detect some obfuscations. However, as it works
on a path enumeration basis, an inherent shortcoming of this approach is its difficulty to
scale on real programs. This is a limitation that all existing symbolic engines are facing.
We do not necessarily aim for sound nor complete DSE-based analyses but rather analyses
that provides relevant obfuscation informations. The first research problem addressed is:

Problem 1. Elaborating relevant DSE-based deobfuscation algorithms that scale on over-
sized & highly obfuscated codes

A second problem is how to remove it or at least how to emphazise it in pursuance of
distinguishing it from the payload. Performing such task might be particularly difficult
without prior knowledge of the program behavior and functionalities. The second problem
addressed is:

Problem 2. Developping algorithms to highlight or discard obfuscation in order to make
the code more understandable for the reverse-engineer

Solving these two research problems would provide great advances in the academic re-
search on binary analysis and malware analysis. Finding ways to address obfuscation with
formal and sound algorithm would greatly enhance malware understanding capabilities
and would lead to great practical application in the malware analysis field.

1.3 Contributions
Foundations of my thesis lay on the edge of safety based formal methods and dynamic

security analysis for malware comprehension. From a global perspective, it aims at study-
ing formal static, dynamic and symbolic approaches for deobfuscation. My thesis gather
four major contributions described below.

1.3.1 Contribution #1: DSE geared for deobfuscation
The first main contribution of my thesis is the conception of two DSE algorithms

which main particularity is to better scale on obfuscated codes than standard approaches:

• An essential part of DSE is the management of concrete values and new symbols
injected in the formula. As it tends to be hardcoded in existing DSE tools, we
formalize and define a new flexible path predicate computation algorithm allowing a
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fine tuning between soundness and completeness. For that, we define a specification
for modulating concretization and symbolization (C/S) within a DSE engine. This is
subsequently defined as a rule-based language, CSml, that can easily be integrated
in the path predicate computation. This langage is designed to have a clear semantic,
to be independant from the DSE engine and to be able to encode all existing policies
from the litterature but also new ones. Experiments showed that no policy performs
better than another, it all depends on the context. Thus, it validates the need of
such flexible mechanisms.

• As standard DSE algorithms are performed in a forward manner, we propose a
new algorithm to modulate the symbolic execution by performing it backwardly in
a bounded manner. This backward-bounded DSE(bb-dse) formalized in Chapter
5 allows to address specific problems i.e. infeasibility queries, while forward DSE
handles feasibility queries. An infeasibility query intents to check infeasibility of
some events or some configurations in a given environement. The main strength
of bb-dse is its scalability on any program regardless of the trace length. Exper-
iments performed showed the effectivness of the algorithm to detect infeasibility
based problems and more especially obfuscation problems.

1.3.2 Contribution #2: Implementation & Optimizations
Implementation To validate these algorithms, all of them have been implemented
and validated on real life examples, thanks to the implementation from scratch of a fully
featured DSE engine based on Guillaume Jeanne’s early work. As a matter of transparency
and reproducibility, the whole toolkit is available in open-source [ANR16; Dav16]. This
platform is formed by a dynamic instrumentation engine based on Pin [Luk+05] (∼5000loc
C++) allowing to generate execution traces and basic debugging interaction. Working on
both Linux and Windows, it also provides interesting features like function parameters
retrieval or self-modification layers tracking. Secondly Binsec/se, the main DSE engine
(∼7000loc OCaml) integrated in the Binsec platform (see Section 6.3.2) managing the
path selection, the path predicate computation and the interaction with external solvers.
This engine supports the two DSE algorithms highlighted above but also the different
formula optimizations described hereafter. Last, Idasec is an IDA plugin allowing to lift
and process data computed by the DSE engine, for post-analysis data exploitation. It
provides many features among which it allows to highlight a dynamic trace in the Control
Flow Graph (CFG) or to trigger an analyse in Binsec/se directly from Idasec.

Optimizations For a path π, various optimizations can be performed when comput-
ing the path predicate ϕπ. We proposed two kinds of optimizations. First, basic pre-
processing optimizations aiming at providing more uniformity performances across solvers.
Second, we designed optimizations aiming at simplifying array manipulations in formula,
which tends to be the most costly operations of solving. Among standard pre-processing
algorithms we can denote constant propagation or backward pruning which remove all
unused terms for the predicate to solve. Then, the rebase optimization aims at limiting
the number of terms created by reusing older term definitions (see Section 7.1.3).
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Array optimizations are used to significantly improve the solving time. The store-map
chain Read-over-Write optimization (STMC-RoW) is a variant of the standard Read-
over-Write. On arrays, the standard read-over-write aims at replacing a logical select
in an array by its previous stored value (if any). Our optimization enjoys a very good
complexity on arrays with constant indexes (O(log(n))) and performs in the worst case
as the standard RoW (O(n)) for one operation. Besides that, the memory flattening
allows to completely remove the array theory when the STMC-RoW managed to remove
all store operations.

1.3.3 Contribution #3: Analysis combinations
Trying to get the best of the two algorithms developed (cf. Contribution #1) we

studied different combinations approaches, like static/dynamic, forward/backward, over-
approximated/under-approximated applied to the deobfuscation but also on vulnerability
discovery and software testing purposes. The idea suggested by these combinations is to
take advantage of the different approaches, considering that dealing with obfuscation is
a multiple facets work and requires to deal with its different aspects. We formalize and
develop three combinations aiming at solving three very different problematics:

• The sparse disassembly is a combination targeting obfuscation whose main goal is
to improve a dynamic disassembly algorithm with a static disassembly controled by
symbolic execution enforcing not to disassemble obfuscated dead code or obfuscated
function call/ret. The first entity of the combination is a static/dynamic recur-
sive disassembly algorithm. The dynamic aspect helps getting a sound disassembly
for indirect or calculated jumps which is not the case for static disassemby. This
algorithm is then intertwined with a static recursive disassembly and a bb-dse algo-
rithm to drive the disassembly not to disassemble spurious code and to disassemble
some hidden control flow edges. Experiments shows that this combination performs
better than IDA which over-disassemble various bytes.

• The Use-After-Free (UaF) vulnerability finding in legitimate programs. This work
was performed in collaboration with Verimag and especially Josselin Feist that drove
most of the design and experiments. This analysis combines a static abstract inter-
pretation analysis aiming at finding relevant code functionalities (ie. malloc, free,
use) in order to extract one or more slices of the program. Then a DSE algorithm
path coverage algorithm is triggered on the slice to find possible vulnerabilities. The
strength of the combination lays in the drastic reduction of possible path to cover
by the DSE thanks to the slice computed by static analysis. The combination al-
lowed to find few previously unknown vulnerabilities and especially in JasPer with
CVE-2015-5221 [Mit15].

• The third combination [Bar+15a] slightly moves appart from binary-level security
and finds an application in source-level software testing. To test a software, we usu-
ally check its compliance to some requirements, represented by properties to check
at some program locations (coverage criteria). These systematic requirements might
be unverifiable due to the program structure, which tends to slow down the testing
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process. By combining abstract interpretation and weakest-precondition calculus,
the analysis manages to detect most of these unsatisfiable tests requirements in
order to remove them and speed-up the testing process. This combination named
VA⊕WP was implemented in the C analysis platform Frama-C [Cuo+12]. On the
set of benchmarks assessed, the combination managed to detect 98% of infeasible
requirements. It significantly improves the accuracy of coverage measurements.

1.3.4 Contribution #4: Experimental Validation

The last contribution is the throughout study of two obfuscation techniques: opaque
predicates and call stack tampering in a real-world context. We propose two detection
methods based on the previously described techniques (cf.Ctb#1). We first, define and
characterize the different kinds of possible opaque predicates and call stack tampering and
explain how to address them with bb-dse. We then perform two case-studies to validate
the detection algorithms:

First, we perform a study of existing packers. This allowed to validate experimentally
the efficiency of our analyses on real obfuscated binaries. It also gives a better under-
standing of the packers inner working and emphasizes the different tricks used in theirs
codes (see Section 10.1).

Second, we perform an in-depth analysis of the X-Tunnel ciphering proxy used by the
Sednit/APT28 group as part of their cyber-espionage attacks to exfiltrate data [CCD16].
Later versions of this program are heavily obfuscated with what appeared to be opaque
predicates. The analysis formalized and developped in this thesis managed not only to
find the obfuscation within the code but also to extract a reduced CFG for every function
of X-Tunnel thus greatly simplifying a subsequent reversing of the program.

Conclusion

All these contributions improve the main underlying goal of this work which is to
empower the reverse-engineering process by giving the analyst semantic information about
the program and especially obfuscation. Subsequently, all the cards are placed in his hands
for a better and deeper understanding of the binary being analyzed, with the assistance
of different tools provided.

Publications This thesis led to the writing of 5 research papers, among which 4 are
already published [Bar+15b; Dav+16a; Dav+16b; Fei+16] and one is still under re-
view [DBM16]. This work was presented during several talks and seminars, including
BlackHat Europe 2016 [DB16a].
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1.4 Thesis outline
The manuscript is split in five parts. Part I provides some background about ob-

fuscation and deobfuscation along with the basics about Dynamic Symbolic Execution.
Chapter 2 lays the basic definitions and draws the global landscape of existing obfusca-
tion and deobfuscation techniques used prior to this thesis. Chapter 3 provides all the
necessary notations and definitions but also basic reminders about the dynamic symbolic
execution inner working. People familiar with these notions can directly jump to the
second part. Part II formalizes and describes the two DSE variants aiming at detecting
obfuscation and reflect Contribution #1. Chapter 4 formalizes all the contributions
brought to the path predicate computation in the DSE algorithm. In the same vein
Chapter 5 formalizes and describes the Backward-Bounded DSE algorithm allowing to
tune the DSE by performing it in the reverse direction. Part III discusses both the imple-
mentation performed as part of this thesis (Chapter 6) and the optimizations developped
in the symbolic engine (Chapter 7). This part develops Contribution #2. Then, Part
IV puts all these algorithms in action in order to validate the benefits they provide. This
part describes and puts in perspective the last two contributions (#3, #4). Chapter
8 shows how they are used to deobfuscate opaque predicates and call stack tampering.
Chapter 9 explores the way they can be combined with other existing analyses in order
for instance, to leverage the obfuscations data into a disassembly algorithm. As an ap-
plication, Chapter 10 presents three use-cases taking advantage of all the techniques and
analysis defined beforehand. Finally, Part V discuss and puts in perspectives all the other
potential applications of this thesis.
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Chapter 2

Background

2.1 Obfuscation

2.1.1 Introduction
Over the years, obfuscation has taken a significant place in the software protection

field. This term generally embraces any mean aiming at slowing down the analysis of a
program for either an analyst or an automated analysis. As such, it has become quite
popular for intellectual property protection, like the video-game industry via Digital Right
Management (DRM) systems [Den16; MG14]; also it gained popularity in the malware
development ecosystem. The only property that should be preserved by obfuscation
is the semantic of the program i.e. its behavior. While some obfuscation techniques
simply alter the syntactic form of a program, for example by twisting its CFG or adding
spurious instructions, obfuscating the real behavior of the program itself is far more
complex since the semantic of the program should be preserved after obfuscation. Even
though watermarking can be considered as an obfuscation which hides some properties
int the program, we focus in this thesis on obfuscation employed in malwares.

2.1.2 Definitions
Let’s consider a program P . Barak et al. [Bar+12] defined an obfuscator O, as a

probabilistic compiler transformation of P in O(P ) which satisfies the three following
properties:

• FunctionalityO(P ) computes the same function as P (provide the same observable
behavior),

• Polynomial slow-down For all P , O(P ) execution time is at most polynomially
slower than P execution time or polynomially bigger than P size,

• Virtual black-box Everything efficiently computable with O(P ) can also be com-
putable with only an oracle access to P .

Under this, definition obfuscation is not possible in all cases in a generic way. However,
obfuscation exists in practice and we choose a more pragmatic approach. Collberg provides
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another definition more practical [CN09]. He first defines an asset as a set of properties on
a program P and some inputs I defined by asset(P, I). Then a metricm that characterizes
the difficulty to compute the asset is defined by m(P, asset(�)) ∈ [0, 1]. O(P ) is an
obfuscation transformation if:

m(O(P ), asset(�)) > m(P, asset(�))

In addition to the semantic preserving property, Collberg’s work [CN09] characterizes
an obfuscation according to three other characteristics:

• effectivness. reversing the obfuscation process requires more resources than creat-
ing it,

• potency. does not weaken other obfuscation,

• stealth. splitted in two: local stealth an adversary cannot find where the transfor-
mation was applied and steganographic stealth an adversary can not find out whether
a transformation has taken place or not,

• cost. overhead in space or time implied by the transformation.

More recently, some works proposed a theoric definition of obfuscation based on in-
distinguishability [Gar+13; SW13]. These definitions are very promising in practice but
suffer for now of performances issues.

2.1.3 Taxonomy of Obfuscating Transformations
Far from being exhaustive, this section gives a little insight of the different kinds of

existing obfuscation along with various examples.

Control & Data The main distinguishing feature of an obfuscation is whether it targets
the CFG whether it targets its data (variables constants, strings, data structures ..).

Common obfuscation aiming at disrupting the CFG intents to make edges implicit or
relying on values known at runtime so that a static analyzer will hardly infer them. Among
existing techniques we can note opaque predicates and call/stack tampering discussed
respectively in Sections 8.1 and 8.2. There is also code diffusion [Tra14] which intends to
maximize some gadgets sharing between functions to blur the distinction between them.
Signals, and exceptions uses callback handlers to jump at any location of the program
without clearly visible edge. Listing 2.1, taken from a dumb virus Win32.Eva uses an
invalid address exception to jump at a given location (example on Figure 2.2 label 1 ).
At a stronger level, Virtual-Machine obfuscation completely recreates a new CFG by using
an opcode based langage as interpreter of the original program [Rol09].
xor edx , edx // edx set to 0
push ptr fs:[ edx] // Save current SEH handler (always at fs+0x0 in the TEB)
mov fs:[ edx], esp // Replace the current handler
inc ptr [edx] // Trigger invalid address (try to read at address 0)

Listing 2.1: Win32.Eva exception triggered
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As a counterpart to control obfuscation, data obfuscation hides the valuable assets
of the program potentially giving hints to the reverser such as cryptographic constant
values, imported functions and program strings. A common obfuscation is to cipher
strings or sensitive information in the program postponing the deciphering at runtime.
Another technique consists in altering data-structures by spliting them, merging scalar
values or scrumbling them, using Mixed-Boolean Arithmetic (MBA) [Zho+07]. Finally,
let us describe an obfuscation used in some malwares to hide library functions used. It
first loads the shared library dynamically, then, given a custom hash function h and the
hash value of the function to load Hf , the obfuscation will iterate all the library functions
and apply the hash function on each function name. If a name s matches the hash values
such as h(s) = Hf then the obfuscator found the right function. If such obfuscation
is used, names are never statically present in the code but only a hash values artifacts.
Finally, self-modification is potent enough to hide both resources and the CFG of the
program.

Static & Dynamic Another important characteristic of an obfuscation is to know
whether it targets the static code and thus the static analysis or whether it targets the
dynamic analysis by triggering the obfuscation at runtime. Static analysis, is highly
dependent on the accuracy of the disassembly. Unfortunately, it can easily be fooled by
obfuscation techniques as the ones presented hereabove. The disassembly can basically
be fooled at three levels [MM16]:

• Code discovery. Namely decoding instructions. Indeed, as there is no distinction
between code and data, the disassembly can wrongly disassemble data or wrongly
left undecoded some code. Malwares are taking advantage of this interleaving to
break the decoding process. An example is shown on Figure 2.2 label 3 , where
due to a spurious data byte 0x2d IDA wrongly disassembled the code sequence
at address 0x40101A. Likewise, code-overlapping [Bon+15] exploits the fact that
instruction are not atomic and some bytes of an instruction decoded separately can
take another semantic. Figure 2.1 shows an example taken from the TELock packer
and discussed by Bonfante et al [Bon+15].

• CFG construction. Namely generating the CFG. The standard approach is to
replace conditional jumps by indirect or computed jumps as shown in listing 2.2. It
prevents static recovering of the jump target addresses.

• CFG partitioning. Namely recovering high-level structures like function bounds
etc. These operations can be confused by CFG flattening and all algorithms designed
to inline, duplicate, interleave functions. Code diffusion is one of them.

Obvsiouly, any self-modifiying code obfuscation would make any static analysis very
difficult if not worthless.
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cmp edi , esi
mov eax , @X
mov ecx , @2
cmov ecx , eax
jmp ecx

Listing 2.2: Conditional jump obfuscation

Addresses 0x01006e 7a 7b 7c 7d 7e 7f 80 81
Bytes fe 04 0b eb ff c9 7f e6
#1 jump at 0x01006e7a inc [ebx+ecx] jmp +1
#2 jump at 0x01006e7e dec ecx jg 0x01006e68

Figure 2.1: TELock code overlapping

Conversely, dynamic analysis sidesteps most static analysis issues as it only goes
through executed code. Contrariwise, it requires to deal with anti-debug, anti-tampering
and potentially one or more process or threads interacting together. In the same way,
due to the dynamic aspect of self-modification, it might be tedious to debug and to locate
dynamically generated code. To prevent reverse-engineering, some malicious software
are using checksum techniques to prevent any tampering of the code or debugging (as
usual breakpoints patch the location by 0xCC to add an INT 3 interruption). The listing
2.3 shows how to compute the CRC of a function chunk in order to check its integrity
against a pre-computed HASH value. This example uses the GCC label-as-a-value feature
allowing to manipulate label addresses as values in C. As an additional protection, most
malwares use anti-VM, anti-debug heuristics not to run in virtual-machine, sandboxes
or controlled environement. Figures 2.2 in 2 shows a manner to check if the program
is being debugged without direct call to isDebuggerPresent. It uses GetProcAddress
to retrieve the address of the function which is then called by call ecx. Conveniently,
IsDebuggerPresent is then removed from imports. Finally, listings A.1, A.2 and A.3
given in annexes, shows respectively: (1) how to check if a certain key is present in the
Windows registry, (2 )if a given process is running and (3) if the program runs suspi-
ciously slower than native performance. In the later case it could indicate a debugged or
instrumented process. These tricks are commonly used to evade dynamic analysis. All
these examples are very basics but many other advanced techniques are playing with the
peculiarities of sandboxes and virtual machines to avoid detection.

1 void ∗ begin , ∗end ;
2
3 int t e s t ( int x , int nb , int dummy) {
4 i f (dummy) {
5 begin = &&begin ;
6 end = &&end ;
7 return 0 ;
8 }
9 int r =1;

10 int i ;
11 begin :

12 for ( i =0; i<nb ; i++)// area
13 r = r ∗ x ; // checksumed
14 end :
15 return r ;
16 }
17
18 int hash_fun ( ) {
19 const int HASH = 3801 ;
20 int sum = 0 ;
21 char∗ p=begin ;
22 while (p<(char ∗) end ) {
23 sum += ( unsigned char ) ∗p++;

14



2.2. Deobfuscation

24 }
25 return sum == HASH;
26 }
27
28 void main ( ) {
29 t e s t ( 0 , 0 , 1 ) ;
30 i f ( hash_fun ( ) )
31 p r i n t f ( " Hash OK ! \ n " ) ;

32 else
33 p r i n t f ( " F a i l hash\n " ) ;
34 }

Listing 2.3: anti-tampering checksuming

Needless to say that some techniques like self-modification are potent enough to dis-
rupt both static and dynamic analyses. Notably, self-modification engines that perform
polymorphism only when functions are called (on-demand) are very difficult to analyse
as the whole code is never available in memory at a given time t.

Protection against symbolic reasoning. There has been very little work on obfusca-
tions trying to circumvent symbolic approaches. Mixed-Boolean Arithmetics are crafted
to be hardly targetable by symbolic execution. Two other techniques are used to im-
pede symbolic execution, first hashing functions (hardly reversible) [Sha+08a] and second
linear unsolved conjectures [Wan+11]. The later takes advantage of the difficulty for
the symbolic execution to reason about loops. Finally, some works proposed to shadow
conditional code obfuscation (input dependent condition) in order to create “secure trig-
gers” [Fut+06]. One famous application of secure triggers based on hashing function is
the Gauss malware which payload has never been deciphered so far [Goo16a].

The obfuscation field is a constantly evolving field with more and more evolved ob-
fuscation mechanisms, enumerating all of them is impossible. Among them, TLB Split-
ting [Tor15] uses some processor features to decipher on the fly the code at a location
where catching the deciphered code is out of reach for classical debugger and dynamic
approaches.

2.2 Deobfuscation

2.2.1 Introduction
The term deobfuscation groups all techniques aiming at evading protected described

hereabove. It can by caracterized as a two step process: (1) detecting the obfuscation, (2)
reverting or deleting it. This later step is potentially harder in practice if not impossible
for some obfuscations. Once detected, it worths considering three actions:

• reverting the obfuscating transformation (usually impossible)

• gather relevant information in the obfuscated code

• simplifying the obfuscated code to facilitate later analyses

My thesis focuses on the last option, and tries to provide automated analyses aiming
at clarifying the code in order to help the reverse-engineer. Furthermore, narrowing the
spectrum of analyses to the ones addressed in this thesis, we solely focus on approaches

15
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Table 2.1: Obfuscation target & Potency summary

Target Against
Control Data Static Dynamic Symbolic

Conditional Code/Secure Triggers X X X X

Mixed-Boolean Arithmetic ∼ X X X

Opaque predicates X X

Call/Stack tampering X X

Code diffusion X X

Signal/Exceptions X X X

Virtual marchine (VM) X X X

Polymorphism (ciphering, packing..) X ∼ X X

Resources ciphering X X X

Checksuming (code, data) X X X

anti-debug (VM, debug..) X X

Code-overlapping X X

Aggregation/Encoding
X X X

(variables split, merge, reordering..)

Aggregation/Encoding
X X

(functions split, merge, reordering..)

Code parallelization X X

CFG flattening X X X

jump encoding (indirect, calculated) X X X

Variable aliasing X X X X
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Set SEH
Frame

raise invalid address (edx=0)

1

2

Restore 
SEH Frame

Exception handler will jump here

3

Figure 2.2: Win32.Eva Obfuscation tricks
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explicitely targeting obfuscation (not simply disassembly matters) and using formal meth-
ods. Far from being exhaustive, this section gives an overview of existing deobfuscation
methods available at the time of study.

2.2.2 Static approaches
Multiple data-flow analyses have been proposed to address obfuscation such as gen/kill,

data dependency, alias analysis and abstraction interpretation [NNH99]. The last one can
be thwarted by obfuscation such as CFG flattening, as the main loop structure will force
abstract interpretation to merge its states leading to very unprecise states. To address
this problem in virtualization-obfuscated binaries, Kinder proposed to enrich the abstract
lattice with a Virtual Private Counter (VPC) to keep memory states splitted and recover
precision [Kin12]. Also, using abstract interpretation, Preda et al, proposed to address
opaque predicates with specific abstract domains modeling the attacker [Dal+06]. The
idea was to refine the domain to get the best detection rate. Various researches are also
carried to handle self-modification statically and especially metamorphism by abstract
intepretation [PGD15].

Limits. Static approaches usually assume the CFG availability, no multi-threading and
most of the time no self-modifying code. Although, polymorphism is a common practice
which breaks many assumptions made by static analysis. We will discuss in later sections
how our works tries to address these limitations.

2.2.3 Dynamic approaches
The main interest of dynamic analysis is to address self-modification. In this case the

goal is to obtain the program after mutation. A generated piece of code can itself be
self-modifying creating some nested layers of polymorphism. A program embedding one
another is called packer. Various models of self-modification have been proposed named
as waves [GMR09; Uga+15] or phases [Coo+09]. As an application, various research
studies proposed automatic unpacker tools like Eureka [Sha+08b], Polyunpack [Roy+06]
and Renovo [KPY07] which intend to be generic enough to work on unknown packers.

Another problematic, addressed by dynamic analysis, is cryptographic functions iden-
tification [CFM12]. While static approaches can be made using known constants, dynamic
analyses can, for instance, compute the entropy of a function output. A regular distribu-
tion of output values could indicate some kind of cryptographic functions.

Limits. The main weakpoint of dynamic analysis is code coverage. Unless, doing fuzzing
to cover as many paths as possible, the analysis is used to be performed on a single
execution trace, which might not be reproducible. Exception is made by the dynamic
tracing tool panda that allow full reproducibility of execution traces. Additionally, the
analysis has to deal with all the anti-debugging and anti-tampering tricks used by malware
which tends to be an endless cat and mouse game. Eventually, it is sometime simply
infeasible to execute the software due to hardware constraints or environment constraints
(connecting to a remote host etc). An example is given in Section 10.2.
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2.2. Deobfuscation

2.2.4 Symbolic approaches
While existing approaches are essentially divided into static methods and dynamic

methods, symbolic approaches offer a valuable balance between both. As a semantic
approach, Lakhotia has published a technique named binjuice which aims at extracting
a semantic summary of code chunks. Any useless instructions from a semantic point
of view would be ignored [LPG13]. More in the scope of this thesis, Brumley in 2007
proposed techniques based on DSE to automatically analyse malicious binaries [Bru+07].
Very recently Ming [Min+15] proposed an approach to deobfuscate opaque predicates
with DSE. That technique suffers some scalability issues. Lately, Yadegary explored ways
to deobfuscate various CFG obfuscations, ROP-based obfuscation and packing using the
combination of a bit-level taint and a generic DSE analysis [Yad+15; YD15]. This
approaches also suffered some scalability issues due to the size of program analyzed.

Limits. Main limitations of existing symbolic execution approaches is the scalability.
Indeed, underlying solvers hardly scale to big programs generating numerous constraints.
As a consequence, it is thus essential to lighten the computation load of solvers in order
to make symbolic execution based deobfuscation.
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Chapter 3

Dynamic Symbolic Execution

3.1 Introduction

Symbolic Execution (SE) is a popular and fruitful formal approach to automatic (code-
based) software testing. Given a path in a program, the key insight of Symbolic Execution
(SE) is the possibility in many cases to compute a formula (a path predicate) such that
a solution to this formula is a test input exercising the considered path. Then, exploring
all the (bounded) paths of the program allows intensive testing.

Basis were laid in the 70’s by King [Kin76], but the technique found a renewal of inter-
est in the mid 2000’s [CS13] when it was mixed with concrete execution [SMA05; Wil+05]
and combined with the growing efficiency of Satisfiability Modulo Theories (SMT) solvers.
SE has quickly become the most promising technique for code-based automatic test gener-
ation, and has led to impressive case studies [Avg+14; Cad+11] and a promise of industrial
adoption at large scale [GLM12]. Its usage for security purposes has also been considered,
thanks to its straightforward adaptation to binary-level analysis [BH11; Son+08]. SE has
successfully been applied in a wide range of security applications such as vulnerability
discovery [Avg+11; HG12] and malware analysis [Bru+07], the topic of this thesis.

DSE Dynamic Symbolic Execution [SMA05; Wil+05] also known as concolic execution
takes advantage of a concrete execution path to perform the computation. It provides the
following advantages:

• the sound execution of the program. The path is sure to be feasible in practice,

• the next instruction executed is always known. This property is particularly helpful
at binary-level when dealing with indirect/computed jumps or instructions poten-
tially raising exceptions,

• by design, all the loops are unrolled.

The main drawback is that the trace followed is an under-approximation of the program
execution which is inputs dependent. At this point, unless specified otherwise, the term
Symbolic Execution will be used for Dynamic Symbolic Execution.
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Concolic engines. This study led to the development of Binsec/se [Dav+16b] a full
featured DSE engine. Yet, several other initiative already exists at binary-level like May-
hem [Cha+12] built at the top of the Binary Analysis Platform [Bru+11]. We can also
note S2E [CKC12] based on KLEE [CDE08], Triton [SS15], Angr [Sho+16] and the closed-
source ConcoLynx [YD15].

3.2 Binary-level semantic: DBA
At binary level, to avoid dealing with all the instructions set of all the architectures

analyses are usually developped on intermediate representation. An intermediate provides
a concise set of instructions encoding the semantic of instructions. Thus, an analysis
designed on such intermediate representation is meant to work regardless of the backend
architecture x86, ARM etc. DBA for Dynamic Bitvector Automata [DB15] is defined as an
intermediate representation of assembly instructions, working on a subset of instructions
independents from the architecture. Similar languages provide such functionalities like
BIL [Bru+11], VEX, REIL [DP09]. Advantages of DBA like most other IR is a side-effect
free and bit-precise language. DBA has the advantage of providing higher-level instruction
design for program analysis like assert, assume or malloc, free. The shortcomings are
the lack of floating-point instruction modeling, the lack of thread, exception and the lack
of self-modification modeling in the language.

3.2.1 Expressions & Types
All scalar variables are represented as bitvector bv ∈ Bv, a list of bits for which the

size is statically known. The memory Mem is represented as bitvector addressed with
the operator @ which represents both read and write operations depending whether it is
used in the left-hand side (lhs) of an assignement instruction or not.

Expressions represent bit-level operations performed on bitvectors. An expression
e ∈ Expr can be a bitvector value bv a variable v ∈ V ar typically registers or the
composition of operations on these two, like unary and binary operations repespectively
♦u and ♦b. At the top of that, two specific values ⊥ and > defines respectively an
undefined value and a non-deterministic value. ⊥ is used to represent undefined behaviors
like some flags on certain operations in x86. > represent a non-deterministic value. Table
3.1 gives the grammar of expressions.

3.2.2 Intermediate Langage
A program P, is defined by a map ∆ from location to instructions: ∆ : loc → Instr.

The core language is composed of basic instructions like assignement, both static, condi-
tional and dynamic jumps and an ending instruction. We denote Σ a concrete memory
state. Σ is a complete function mapping each variable v ∈ V ar to a value bv ∈ Bv and
mapping variable Mem to an array such as: Bv{addr_size} 7→ Bv{8}. The operational
semantic is defined such that an instruction updates the memory state and the current
location accordingly.
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Table 3.1: DBA Expressions grammar

bv ∈ Bv ({0, 1}n with n size of the bitvector)
v ∈ V ar

♦u ::= − | ¬
♦b ::= + | − | × | /u,s | %u,s | ‖ | && | ⊕ | �u,s

| � | :: | <u,s | ≤u,s | = | 6= | >u,s | ≥u,s
e ::= e ♦b e | ♦u e | @[ e ] | v | bv | ⊥ | >

At the top of the core language, DBA includes various annotations and utilitarian
instructions, aiming at modeling specific behavior and used for analysis specific purposes.
For instance, malloc and free are used to model an allocation and a “free” in memory.
Similarly, assert and assume can be used afterward depending on the analyses.

Assembly instructions are highly likely to be decoded as multiple instructions sharing
the same address in the program and forming a DBA block denoted B. Instructions
within a block are ordered using an id ∈ N allowing to pinpoint each of them separately.
Within a block, an instruction can jump to any instructions, but the language enforces
jumps accross instructions to be performed on blocks entrypoint. Thus, any instruction
in the program is addressed by l ∈ loc such as loc ∈ (Bv{addr_size} × N). The complete
grammar is given in table 3.2. A condition c is defined as an expression that evaluates to
a bitvector of size 1 written Bv{1}.

Table 3.2: DBA instructions

l ∈ loc, loc ∈ (Bv{addr_size} × N)
lhs ::= v | v{i, j} | @[ e ]
inst ::= lhs := e

| goto e | goto l
| ite(c)? goto l ; goto l
| assert c | assume c
| malloc e | free e
| stop

stmt ::= < l, inst >

program ::= ε | stmt | stmt ; stmt

Some other extensions have been added to DBA, allowing to segment memory in region
along with some permissions [DB15]. -
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3.2.3 Usages
As a starter, Listing 3.1 gives the DBA semantic decoding of the imul eax, dword

ptr [esi + 0x14], 7, instruction in x86. As a first advantage, using such modeling
allows a more simple syntactic processing. Indeed, it is easier to match for instance an
instruction assigning a given register rather than having to deal with the entire instruction
set of the architecture with all possible parameters.

In terms, of static analysis DBA is being used as an intermediate representation se-
mantic for abstract interpretation, simulation or high-level predicate recovery [DBG16]
within the Binsec platform and we use it for symbolic execution in this thesis.
res32 := (@[( esi(32) + 0x14(32) )] ×(s) 7(32))
temp64 := (( exts @[( esi(32) + 0x14(32) )] 64) ×(s) (exts 7(32) 64))
OF := ( temp64(64) 6= (exts res32(32) 64))
SF := ⊥
ZF := ⊥
CF := OF(1)
eax := res32(32)

Listing 3.1: imul eax, dword ptr [esi + 0x14], 7

3.3 Definitions

3.3.1 Path predicate
Given a program P over a vector V of input variables taking values in a domain

D , D1 × . . . ×Dm, a test datum t for P is a valuation of V , i.e. t ∈ D. The execution
of P over t, denoted P (t), is a path (or run) π , (l1,Σ1) . . . (ln,Σn), where the li denote
control-locations (or simply locations) of P and the Σi denote the successive internal
states of P (i.e valuation of all global and local variables as well as memory-allocated
structures) before the execution of each li.

Definition. ϕ is a path predicate for π if for any input valuation t ∈ D, t satisfies ϕ iff
P (t) covers π.

Correctness ϕ is said to be correct if any solution covers the path π.
Completness ϕ is complete if any input covering the path π is a solution.

program path predicate ϕ1 concretization ϕ2 symbolization ϕ3

inputs: a, b a = 5
x := a × b x1 = a× b x1 = 5× b x1 = fresh

x := x + 1 ∧ x2 = x1 + 1 ∧ x2 = x1 + 1 ∧ x2 = x1 + 1
//assert x > 10 ∧ x2 > 10 ∧ x2 > 10 ∧ x2 > 10

Figure 3.1: Path predicate, concretization and symbolization
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A path predicate is intuitively the logical conjunction of all branching conditions and
assignments encountered along that path. Figure 3.1 presents a simple program path
(two assignments and a branching condition x > 10 taken to true) together with three
possible path predicates for that path. It is straightforward to check that ϕ1 is correct and
complete (a valuation of a and b satisfies ϕ1 iff their execution satisfies the assertion). ϕ2 is
correct but incomplete due to the additional constraint a = 5 added by the concretization
and ϕ3 is complete but incorrect because of the symbolization that removed the constraint
x1 = a× b (fresh is a new unconstrained variable) .

3.3.2 Symbolic Execution

Let’s consider the set of finite1 paths of a program P denoted ΠP . A symbolic algo-
rithm builds iteratively a set of tests by exploring all the feasible paths. The three major
components of the SE algorithm are the following:

• Sel, a path selection strategy, aiming at choosing the most appropriate path to
explore for the intented analysis. This function is defined by: Sel : ΠP → π

• C, the path predicate computation function. It computes the predicate of the path
in some predefined theories denoted by T . In our case in the bitvector and array
(see. Section 6.4). This function is defined by: C : π → ϕ

• Sol, the satisfiability checking using an automatic solver. This function takes a
formula φ ∈ Φ with Φ ⊂ T and returns either sat with a solution t (i.e a test

input) or unsat without solution. Formally we note SolT : Φ→
{

(sat, t)
(unsat, ∅) the

satisfiability function that checks a formula in the given theory T . Note that most
SE tools rely on Off-The-Shelf (OTS) solvers (see. Section 6.4).

Therefore, we can define the symbolic execution algorithm in its entirety.

Definition For a program P and a set of finite paths ΠP , the symbolic execution algo-
rithm denoted FDSE is defined by:

FDSE : (Sel ◦ C ◦ Sol)(ΠP )

Algorithm 1 shows how the Symbolic Execution algorithm works with its three com-
ponents, the path selection function (line 4), the path predicate computation (line 3) and
the solving function (line 6).

Dynamic Symbolic Execution enhances SE by interleaving concrete and symbolic
execution. The dynamically collected information can help the three main DSE operations
Sel, C and Sol by adjusting and choosing the relevant approximations (cf. Figure 3.1
and Chapter 4). Its direct impact is on the sets of paths ΠP that is created by concrete

1enforced by bounding the depth of the path
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Algorithm 1: Symbolic Execution algorithm
Input: a program P with finite set of paths Π(P )
Output: TS a set of pairs (t, π) such that P (t) covers π
TS := ∅;
Spaths := Π(P );
while Spaths 6= ∅ do

π := Sel(Spaths); Spaths := Spaths\{π} ;
ϕπ := C(π) ;
switch Sol(ϕπ) do

case sat(t): do TS := TS ∪ {(t, π)};
case unsat: do skip ;

end
end
return TS;

execution of the program. The underlying property that appears is that the path predicate
is meant to be satisfiable. Otherwisely said ∀ π ∈ ΠP , ϕ � sat, or more formally:

∀π ∈ ΠP ,∃ t ∈ D such that (C ◦ Sol)(π) = SAT, t

3.4 Path predicate computation
Intuitively, the path predicate computation is similar to concrete execution, except

that the computation is performed on logical formulas rather than on concrete values. We
denote by Σ∗ the symbolic memory state which maps all variables v ∈ V ar to symbolic
values ϕ (logical terms on logical variables ranging over Bv) and the distinguished variable
Mem to a logical array from addresses to bytes. The path predicate ϕ is a first-order logic
formula over logical variables and logical arrays. At a given point of execution, the internal
state of the algorithm is composed of l,Σ∗, ϕ, respectively a location, a symbolic memory
state and the current path predicate. The algorithm starts from the initial location l0,
the initial state Σ∗0 associating a fresh logical variable to each program variable and a fresh
logical array to Mem, and ϕ0 , true. It then proceeds instruction by instruction along
the execution. At the end the computed path predicate ϕ is returned. These notations
are summarized in table 3.3.

Recall that the execution trace being fixed, the successor of each branching instruction
is known. The operational semantic of the path predicate computation algorithm over
DBA is given in Figure 3.2 where  represents path predicate computation itself while
`e represents the symbolic evaluation of a DBA expression.

For instance, rule var Σ∗,v`eΣ∗(v) states that the symbolic evaluation of variable v is
the symbolic value stored for v in the current symbolic memory state Σ∗, denoted Σ∗(v).
Rule l − goto e Σ∗,e`eϕe ϕ′,ϕ∧to_addr(le)=ϕe

l,Σ∗,ϕ,goto e le,Σ∗,ϕ′,∆(le) allows the symbolic evaluation of a dynamic
jump branching to location le. The rule reads as follows: expression e is symbolically
evaluated into the symbolic value ϕe and location le which is converted to a concrete
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Table 3.3: Notation : forward symbolic execution

Symbol Meaning
Φ Set of all first-order logic formulas
Σ The concrete state of variables and memory
Σ∗ The state of logical variables and memory
∆ Mapping of location to instructions (loc → Instr)

ϕ Logical formula defining the path taken
Ω The execution environment defined by : l,Σ∗, ϕ

address with to_addr : loc → Bv. Thus, the constraint to_addr(le) = ϕe is added to
the path predicate modeling the fact that the execution flow must jump to le to ensure
soundness. Remaining unexplained symbols are:

• the symbols gathered into ♦∗u and ♦∗b are the logical counterparts of the unary and
binary symbols of concrete expressions, e.g “+” is evaluated to the logical operator
bvadd of the bitvector theory;

• select/store are the standard logical operators from the theory of arrays, representing
the readings and writings to specific array indexes;

• fresh designates a new logical variable in the formula.

Property 1. The path predicate computation algorithm of Figure 3.2 is correct and com-
plete, i.e. it returns a correct and complete path predicate.

This concludes the chapter recalling background notations and definitions about dy-
namic symbolic execution. This lays the basis for the algorithms improvements formalized
in the next Part (II).
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Expr : cst Σ∗, bv `e bv
var Σ∗, v `e Σ∗(v) binop

Σ∗, e1 `e ϕ1 Σ∗, e2 `e ϕ2 ϕ , ϕ1 �∗b ϕ2

Σ∗, e1 �b e2 `e ϕ

unaryop
Σ∗, e `e ϕe ϕ′ , �∗uϕe

Σ∗, �ue `e ϕ′
@ Σ∗, e `e ϕ

Σ∗,@ e `e select(Σ∗(Mem), ϕ)

Instr : goto l1
l,Σ∗, ϕ, goto l1  l1,Σ∗, ϕ,∆(l1) le − goto e

Σ∗, e `e ϕe ϕ′ , ϕ ∧ to_addr(le) = ϕe
l,Σ∗, ϕ, goto e le,Σ∗, ϕ′,∆(le)

T − ite Σ∗, e `e ϕe ϕ′ , ϕ ∧ ϕe = true

l,Σ∗, ϕ, ite(e) : l1; l2  l1,Σ∗, ϕ′,∆(l1) F − ite Σ∗, e `e ϕe ϕ′ , ϕ ∧ ϕe = false

l,Σ∗, ϕ, ite(e) : l1; l2  l2,Σ∗, ϕ′,∆(l2)

var assign
Σ∗, e `e ϕe Σ∗new , Σ∗[v ← fresh] ϕ′ , ϕ ∧ fresh = ϕe

l,Σ∗, ϕ, v := e l + 1,Σ∗new, ϕ′,∆(l + 1)

@ assign
Σ∗, e `e ϕe Σ∗, e′ `e ϕe′ Σ∗new , Σ∗[Mem← freshm] ϕ′ , ϕ ∧ freshm = store(Σ∗(Mem), ϕe′ , ϕe)

l,Σ∗, ϕ,@ e′ := e l + 1,Σ∗new, ϕ′,∆(l + 1)

stop
l,Σ∗, ϕ, stop return ϕ

Figure 3.2: Path predicate computation.
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Chapter 4

Concretization/Symbolization cost
modulation

This chapter introduces a new DSE algorithm allowing to modulate in a flexible man-
ner concretizations and symbolizations performed during the symbolic execution. This is
made possible via the formalization of C/S policies integrated into a rule-based language
CSml and implemented in Binsec/se. Benchmarks performed shows a negligible time
overhead while proving the usefulness of such a flexible mechanism.

4.1 Introduction

Problem While a purely symbolic approach is worth considering, the strength of mod-
ern SE tools is to symbolically evaluate only a (small) trace fragment. Concretization
uses run-time values in order to under-approximate the path predicate, while symboliza-
tion over-approximate the path predicate by introducing new logical variables. The former
allows to handle in a precise but limited way parts of an execution which are either miss-
ing (e.g. system calls) or too costly to reason about (e.g. cryptographic functions), while
the latter allows to generalize certain program steps, keeping the reasoning exhaustive
but less precise.

Actually, choices of concretization and symbolization (C/S) are a crucial part of mod-
ern SE tools, together with path predicate computation and path selection. Yet, while
the latter are either well-understood (path predicate) or under active research efforts
(path selection), C/S policies have been much less studied. Especially, design choices
behind implemented C/S policies are often barely explained, and most SE tools either
propose only hard-coded C/S policies, or give full control on a line per line manner in the
code [CKC12].

Goal and contributions We propose to address these problems through a clear sepa-
ration of concerns between (1) a specification mechanism for C/S policies in SE, and (2)
a new SE algorithm parametrized by an arbitrary C/S policy specification as sketched in
Figure 4.1.
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• We formalize what a C/S policy is and we revisit the standard path predicate com-
putation algorithm taking C/S policy into account (Section 4.2.1). This is the first
time such a parametric view of the core algorithm behind SE is provided. We clearly
show where the C/S policy matters and we discuss correctness issues.

• We propose CSml, a rule-based specification language for defining C/S policies,
together with its semantics (Section 4.3). The language is simple, yet powerful
enough to encode standard C/S policies. Again, correctness issues are discussed.

• As a second application, these results have been implemented on top of the Binsec
framework [Dav+16b], yielding the first SE tool with fully customizable C/S policies
through high-level specifications (Section 4.4). First experiments demonstrate that
the overhead induced by this genericity is very low (Section 4.5).

• Finally, we present the first quantitative comparison of C/S policies (Section 4.5.1),
focused on policies dedicated to the handling of memory operations. We compare
five policies on 169 programs. We found that, while new policy PP* performs better
on most examples, there is still a high variability of results between the policies
depending on the considered example. This is a strong a posteriori argument for a
generic C/S specification mechanism.

DSE engine
(C/S hardcoded)

DSE with C/S
CSML

spec

standard DSE algorithm our C/S DSE algorithm

Figure 4.1: DSE engine with C/S overview

Outcome This work proposes a clear separation of concerns between the core SE algo-
rithms and C/S specification, paving the way for flexible SE tools with easy to configure
C/S policies. Additional benefits include: (1) better documented policies, facilitating
their understanding, comparison and reuse; (2) the systematic study of concretization
and symbolization (including both analytic and quantitative analysis) in order to better
understand their impact and to identify interesting trade-offs; and finally (3) the fine-
tuning of dedicated policies tailored to specific programs or needs.

State of the Art Most SE tools implement a single hard-coded built-in C/S pol-
icy, which can favor either scalability (i.e., by considering most values as concrete) or
completeness (i.e., by keeping more symbolic values). For instance, the pioneering tools
DART [GKS05] and CUTE [SMA05] fall in the former category (memory addresses, re-
sults from external library calls and part of non-linear expressions are concretized), while
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PathCrawler keeps the computation fully symbolic [Wil+05] and EXE [Cad+08] stands
in between. More recent engines can even build on more sophisticated heuristics in the
hope of reaching a sweet spot between scalability and completeness, typically based on
tainting [HG12; SAB10] or dataflow analysis [Cha+12]. We showed in Section 4.3.4 how
such policies can be specified in CSml.

4.1.1 Definitions
Let’s define the three decisions that can be taken on an expression during the path

predicate computation.

Concretization (C) uses run-time values in order to under-approximate the path predi-
cate, allowing to handle in a precise but limited way parts of an execution which are
either missing (e.g. system calls) or too costly to reason about (e.g. hash functions).
For instance, concretizing read and write addresses in memory significantly reduces
the complexity of the path predicate since the theory of arrays is computationally
hard to solve

Symbolization (S) over-approximates the path predicate by introducing a fresh log-
ical variable, allowing to generalize certain program steps, keeping the reasoning
exhaustive but less precise. For example, symbolizing eax after a system call is a
good way to simulate all possible return values of the call. It can also simulate the
non-deterministic values of certain instruction like cpuid or rdtsc

Propagation (P) computes the path predicate as explained in Section 3.4, without any
extra-approximation.

4.1.2 Path predicate correctness
While performing DSE, we might be driven into ignoring some functions not execut-

ing them symbolically or to ignore some instructions not decoded in the intermediate
representation. While in practice, it helps to narrow the computation to the main code
of interest, it might also yield incorrect path predicates. Rarely, it can be due to a bad
encoding of the instruction semantic in the given IR.

Definition 1. The decoherence or loss of correctness of the path predicate is the phe-
nomenom by which logical values are being made incorrect w.r.t the program execution
due to unhandled semantic side-effect of the original program execution.

Figure 4.2 gives an exemple of decoherence that might occur when purposely not
tracing a given function here myfun. If not handling properly registers or memory that
might have been modified by symbolizing them, we can provoke such decoherence. In
this example, the stack pointer esp has not properly been updated after the function
return because the stdcall except the callee to clean-up its stack. Therefore, two kinds
of decoherence may happened:
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Addr x86-stdcall DBA Path predicate ϕπ Path constraints
... ... inputs:esp0, esi0

@0 push esi @[esp-4] := esi @[esp0− 4] = esi0 esp0− 4 = 0x42
esp := esp - 4 ∧ esp1 = esp0− 4

@1 call myfun esp := esp-4 ∧ esp2 = esp1− 4 esp2 = 0x3e
@[esp] := @2 ∧ @[esp2] = @2
goto @myfun

[FUNCTION CODE EXECUTION SKIPPED]
@2 pop esi esi := @[esp] ∧ esi1 = @[esp2] esp2 = 0x42

esp := esp+4 ∧ esp3 = esp2 + 4

Figure 4.2: Decoherence exemple by skipping function execution

• a sat-decoherence. is a decoherence breaking the execution soundness while keep-
ing a satisfiable path predicate. In the example Figure 4.2, if considering a simple
logical propagation (P), it is expected that pop esi will get the value pushed on
the stack by push esi. However, in the path predicate we have:

@[esp0− 4] = @[esp2]
@[esp0− 4] = @[esp1− 4]⇔
@[esp0− 4] = @[esp0− 8]⇔

=⇒ sat

The load is performed at the wrong offset. But, as this offset is not constrainted,
the path predicate is still sat.

• an unsat-decoherence. is an excecution soundness loss which turn the path pred-
icate to be unsatisfiable. In the example Figure 4.2, if we concretize the load and
store addresses we obtain more path constraints (last column). When comparing
the logical addresses of the load and store we have:

esp0− 4 = 0x42 ∧ esp2 = 0x42
esp0 = 0x3e ∧ esp1− 4 = 0x42 ⇔
esp0 = 0x3e ∧ esp1 = 0x3e ⇔
esp0 = 0x3e ∧ esp0− 4 = 0x3e ⇔
esp0 = 0x3e ∧ esp0 = 0x3a ⇔

=⇒ unsat

The esp0 cannot hold two different values in the same time, thus the path predicate
is unsat. (we also have esp2 = 0x3e ∧ esp2 = 0x42 trivially unsat).
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4.1.3 C/S policy introduction
Both concretization and symbolization allow to make SE more robust to real programs,

through improving practical solvability. It can also tremendously reduce the decoherence
phenomenom described in the previous section. Yet, they come at the price of losing
either completeness (concretization) or correctness (symbolization). The decision upon
which a value is concretized or symbolized is in general hard-coded inside the path pred-
icate computation of existing tools. Our goal, is precisely designing a flexible and clear
specification mechanism for such decisions.

Let’s consider the instruction x := @[a×b] for which a and b had respectively values
7 and 3 at runtime. The logical formula associated with that instruction would be x =
select(M,a × b) where M is a logical variable representing the memory. Intuitively, a
C/S policy defines what actions are to be performed in terms of concretization and
symbolization for that instruction. Assuming we want to concretize read operations in
memory there is at least three ways to perform it:

• [incorrect] x = select(M, 21) is incorrect as the property a× b = 21 is lost

• [minimal] x = select(M, 21) ∧ a× b = 21

• [atomic] x = select(M, 21) ∧ a = 7 ∧ b = 3

While [minimal] and [atomic] seem equivalent, [atomic] forces the values taken
by a and b while [minimal] can still choose a and b as long as the product is 21. In
addition [minimal] does not get rid of the × operator, which can come at cost for more
complex operators or simply if the underlying theory used does not support it. None of
these three policies is clearly the best, all depend on the context hence the need for a
clear specification is required.

4.2 DSE algorithm with C/S modulation

4.2.1 C/S policy enriched DSE algorithm
As recall, the goal of a C/S policy is to decide whether a given expression should

be propagated (P) the normal behavior as in the standard algorithm (cf. Figure 3.2),
concretized (C) hence replace by its runtime value or whether it should be symbolized
(S) hence replaced by a fresh (unconstrainted) symbol. We reuse here, all the notations
used in the Chapter 3 about symbolic execution background.

We denote ρ , {C,S,P} the set of possible decisions and State the set of concrete
memory states. We define a C/S policy csp_expr as a function that takes as input a
location l ∈ loc, an instruction i ∈ Instr, a concrete memory state Σ and an expression
e ∈ Expr, and returns a decision d ∈ ρ. Formally:

csp_expr : loc × Instr × Expr × State→ ρ
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Path predicate computation with C/S policy The C/S policy is queried inside
the path predicate computation algorithm each time an expression must be evaluated.
Intuitively, the standard algorithm given in Figure 3.2 is the case where the decision is
always propagate (P), starting from an initial state where all variables are symbolic.

A version of the path predicate computation algorithm revisited for taking C/S policies
into account is presented in Figure 4.3. The main difference with the standard approach
is that, the symbolic evaluation operator `e is slightly modified to `cs• to use the policy.
This operator now returns a symbolic expression together with a formula to be added to
the current path predicate. Thus, before evaluating an expression, csp_expr(l, i, e,Σ) is
queried in order to know which action shall be performed on it (lower part of Figure 4.3):

• S: the expression e is replaced by a new symbol;

• P : the expression e is logically evaluated, applying the C/S policy on each sub-terms
[with `cs◦ ];

• C: the expression e is logically evaluated [with `cs◦ ], then the resulting logical
expression is constrained to be equal to the concrete evaluation evalΣ(e) of e, in
order to preserve correctness of concretization.

Note that `cs• [and `cs◦ ] return both a symbolic expression and a formula, the latter
representing the constraints potentially induced by concretizing some subterms of the
expression to evaluate.

The semantic defined in 4.3 yields various interesting properties:

Property 2. An execution with the P policy is strictly equivalent to the standard DSE
semantic depicted in Chapter 3.

Property 3. A policy using P and C keeps the correction but loses the completness.

Property 4. A policy using P and S keeps the completness but loses correction.

4.3 CSML: C/S Specification Langage
The main goal is to design a high-level specification language for C/S policies able

to encode major policies found in the literature (see. Section 4.3.4). Especially we want
to distinguish between [incorrect], [minimal] and [atomic]. Besides expressiveness,
the following properties are also desirable: (1) a clear semantics; (2) simplicity and con-
cision; (3) independence from the code under analysis or from a particular SE tool; (4)
“executability”, meaning we want to synthesize the code enforcing a C/S policy from its
specification in order to use it in a SE tool.

We achieve these goals through CSml, a high-level rule-based language offering various
functionalities like pattern matching or subterm checking on the instruction and expres-
sion being processed. That language can be integrated in the modified DSE algorithm
formalized in the previous Section 4.2.1.
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Expr : cst Σ∗, bv `cs◦ bv, true
var Σ∗, v `cs◦ Σ∗(v), true binop

Σ∗, e1 `cs• φ1, ϕ1 Σ∗, e2 `cs• φ2, ϕ2

Σ∗, e1 �b e2 `cs◦ φ1 �∗b φ2, ϕ1 ∧ ϕ2

unaryop
Σ∗, e `cs• φe, ϕe φ′ , �∗uφe

Σ∗, �ue `cs◦ φ′, ϕe
@ Σ∗, e `cs• φe, ϕe φ , select(Σ∗(Mem), φe)

Σ∗,@ e `cs◦ φ, ϕe

Instr : goto l1
l,Σ∗, ϕ, goto l1  l1,Σ∗, ϕ,∆(l1) le − goto e

Σ∗, e `cs• φe, ϕe ϕ′ , (ϕ ∧ ϕe ∧ to_addr(le) = φe)
l,Σ∗, ϕ, goto e le,Σ∗, ϕ′,∆(le)

T − ite Σ∗, e `cs• φe, ϕe ϕ′ , ϕ ∧ ϕe ∧ φe
l,Σ∗, ϕ, ite(e) : l1; l2  l1,Σ∗, ϕ′,∆(l1) F − ite Σ∗, e `cs• φe, ϕe ϕ′ , ϕ ∧ ϕe ∧ ¬φe

l,Σ∗, ϕ, ite(e) : l1; l2  l2,Σ∗, ϕ′,∆(l2)

var assign
Σ∗, e `cs• φe, ϕe Σ∗new , Σ∗[v ← fresh] ϕ′ , (ϕ ∧ ϕe ∧ fresh = φe)

l,Σ∗, ϕ, v := e l + 1,Σ∗new, ϕ′,∆(l + 1)

@ assign
Σ∗, e `cs• φ, ϕe Σ∗, e′ `cs• φ′, ϕe′ m′ , store(Σ∗(Mem), φ′, φ) ϕm , (ϕ ∧ ϕe ∧ ϕe′ ∧ freshm = m′)

l,Σ∗, ϕ,@ e′ := e l + 1,Σ∗[Mem← freshm], ϕm,∆(l + 1)

Σ∗, e `cs• :


fresh, true if ρ = S
φe, ϕe if ρ = P , Σ∗, e `cs◦ φe, ϕe
Cφ, ϕe ∧ (Cφ = φe) if ρ = C, Σ∗, e `cs◦ φe, ϕe and Cφ , evalΣ(e)

 ρ , csp_expr(l, i, e,Σ)

Instruction, location l and concrete state Σ are propagated inside all `cs• rules, but we omit it for
clarity.

Figure 4.3: Path predicate computation with C/S policy
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4.3.1 Language specification
We now describe CSml, our rule-based language whose syntax is given in Table 4.1.

It allows a scalable level of description from the generic high-level policy to a precise and
highly targeted one.

Basic principles A rule is of the form guard ⇒ ρ where the guard allows to check if
the rule should be fired (typically using pattern-matching and subterm checks) and ρ is
the decision to be returned by the policy. As explained before, rules are queried with the
current location, instruction, expression and concrete memory state. Namely, guards are
denoted by φloc :: φins :: φexpr :: φΣ, where:

• φloc is a predicate on the location,

• φins is a predicate on the instruction,

• φexpr is a predicate on the expression,

• φΣ is a predicate on the concrete memory state.

Rules are tested sequentially, and the first matching rule returns its associated action.
If no rule gets triggered, then a default rule is applied. In each rule, guard predicates
are also checked sequentially, so that φloc must be satisfied in order to check φins and
so on. Note that any of these predicates can be replaced by a wildcard ∗, which always
evaluate to true. Finally, guard predicates may communicate in a limited way through
meta-variables and placeholders.

Table 4.1: Policy language

policy ::= rules default | default
rules ::= rule | rule rules
rule ::= guard ⇒ ρ

default ::= default ⇒ ρ

guard ::= φloc :: φins :: φexpr :: φΣ

φloc ::= loc | [loc..loc] | *
φins ::= 〈pinstr〉 | *
φexpr ::= 〈pexpr〉 | expr+ ≺ term+ | expr+ � term+ | ∗
term+ ::= expr+ | instr+

φΣ ::= P (expr)
. expr+: extended expression, allowing placeholders (!)
. pexpr: expr. pattern, allowing placeholders (!) and meta-variables (?)
. instr+ and pinstr: the same w.r.t. instructions
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Matching and meta-variables Predicates for φexpr and φins typically allow to check
if the input expression (resp. instruction) matches a given pattern pexpr (resp. pinstr).
A pattern is similar to an expression (resp. instruction), but with two additional kinds of
variables.

Meta-variables (prefixed by “?”) allow to match any term. Once successfully matched,
these terms become available as placeholders in the subsequent guard predicates. When
a meta-variable does not need to be reused, one can employ an anonymous meta-variable
??.

Placeholders (prefixed by !) take the value of their corresponding meta-variable (e.g.,
?e for !e) once matched. The distinguished placeholder !� contains the current expression
being processed. Given a pattern p, we denote the predicate “match p?” by 〈p〉. As an
example, we concretize the expression being added to esp, in any assignment instruction:

∗ :: 〈?? := esp + ?e 〉 :: 〈!e 〉 :: ∗ ⇒ C
Here, ?e is defined in φins and then available in φexpr through !e. The rule reads as follows:
if the current instruction assigns the sum of esp and some expression e (being captured by
the meta-variable ?e) to any lhs (meta-variable ??), and the current expression matches e,
(predicate 〈!e〉), then it should be concretized. Or, put another way: if we are evaluating
an expression e in the context of an instruction where e is added to esp and assigned to
some lhs, then e should be concretized.

Another example, slightly more complex is given in the table 4.2. This policy means:
“if we are evaluating an expression e in the context of an assignment where e is used as
the write address, then e is concretized, otherwise it is propagated.”

Table 4.2: Concrete Store policy

∗ :: 〈@?e := ??〉 :: 〈!e〉 :: ∗ ⇒ C ;
default ⇒ P ;

Subterm This language is already quite expressive, but still does not allow to match
a nested sub-expression depending on its context. The typical usage is, when willing to
concretize a read address, we want to know if the given expression is in the scope of a read
operation. This can be solved by introducing the � operator (resp. ≺), allowing to check
if an expression is a subterm (resp. strict subterm) of another one. The rule specifying
that any read or write expression must be concretized is written:

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ C

In this rule ?i matches a whole instruction.

The rule can be read as follows: when evaluating an expression e (given by the spe-
cial placeholder !�) such that the expression @e is a subterm of the current instruction
(captured by ?i) then e should be concretized. Note that ≺ and � can be applied to
(extended) terms containing placeholders (expr+ and instr+ in Table 4.1).
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Other predicates φloc consists in checking that the input location l is either equal
to a given location loc or within a range of locations [loc..loc’]. φΣ is a predicate over
Expr that can query information from Σ. For example, we can imagine performing some
concretization and/or symbolization depending of the runtime value of the expression
being evaluated. φΣ will be lightened in the next section with extended memory states.

4.3.2 CSml properties
CSml ensures interesting properties on the C/S policy being defined. In order to

present them, we need a few additional definitions. A CSml rule is said to be well-
defined if it is well-typed and if placeholders are used in an appropriate manner. Note
that the well-definedness of a rule is automatically checkable. A C/S policy is well-defined
if it is a total function (deterministic behavior, defined on any input), and it is correct
if it leads to the computation of a correct path predicate (cf. Section 3.4). Then, by
construction, we have the good following properties2:

Property 5. A set of well-defined CSml rules defines a well-defined C/S policy.

Property 6. A set of well-defined CSml rules employing only C and P defines a correct
C/S policy.

4.3.3 Advanced Features
We propose here several useful extensions to the CSml core language.

Richer decisions We enrich the set of possible decisions by allowing a domain re-
striction on both S and P , now denoted SD and PD, where D is an interval constraint
(resp. singleton constraint) of the form [a..b] (resp. [a]) with a and b expressions evaluat-
ing to bitvector values. This feature is useful typically for limiting the domain of a fresh
logical variable, but it can also be used to encode incorrect concretization or restricted
propagation (cf. below). Note that the domain does not need to be defined by constant
values, for example its definition can involve runtime evaluation of bitvector expressions,
through function evalΣ : Expr → Bv

• incorrect concretization of r/w expressions [incorrect]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ S[evalΣ(!�)]

• restriction of r/w expressions [BH11]

∗ :: 〈?i 〉 :: (@ !�) ≺ !i :: ∗ ⇒ P[evalΣ(!�)−10..evalΣ(!�)+10]

2Property 5 comes also from the sequential ordering of rules and the presence of a default rule.
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Richer subterm constraints We allow chaining of subterm constraints, e.g. e ≺
pe1 ≺ . . . ≺ pen ≺ term+, together with the use of anonymous meta-variables inside
the pei. This allows finer subterm relationship, such as checking that an expression is a
subterm of an expression pattern, used itself within another expression.

• recursive concretization of r/w expressions:

∗ :: 〈?i 〉 :: !� ≺ (@ ??) ≺ !i :: ∗ ⇒ C

Compared with [minimal] concretization, this rule enforces the concretization of all
subterms of a r/w expression. This policy is also slightly different from atomic concretiza-
tion CS3 which encoding is shown hereafter.

Richer predicates We can also allow more predicates in the language. This can be done
at two stages: either enriching the four classes of predicates already defined, or adding
new classes of predicates. For the first category, it could be useful to have a var predicate
indicating if a term is a variable or not. An application is to restrict concretization to
atomic variables:

• atomic concretization of r/w expressions [atomic]

∗ :: 〈?i 〉 :: var(!�) ∧ !� ≺ (@ ??) ≺ !i :: ∗ ⇒ C

For the second category, it could be useful to consider a predicate class φstep regarding
the step of the execution, allowing for example to define a C/S policy step by step in a
trace-oriented manner, which may sometimes come handy.

Extended memory states In the same vein, it can be interesting to enrich the pred-
icate φΣ working on a concrete memory state Σ into a predicate φΣ+ working on an
extended concrete memory state Σ+. Basically, an extended concrete memory state is a
concrete memory state enriched with additional runtime information collected. A typical
example of such a predicate is T̂Σ+(e), indicating whether an expression e is tainted or
not in a given extended memory state Σ+, using dynamic taint information [SAB10].

Note that this extension makes the C/S policy dependent on the services provided by
the underlying dynamic execution engine. While it is fair to assume that a concrete evalu-
ation function evalΣ is available on any dynamic execution engine, more exotic queries on
Σ+ may not be available. We assume that C/S policies querying unsupported Σ+-function
(or Σ+-predicate) are syntactically rejected.

C/S injection Besides C/S at the level of symbolic evaluation, another common pat-
tern is to enforce concretization and/or symbolization through direct modification of the
symbolic memory state. This is particularly useful to handle unknown or hard-to-reason-
about functions (e.g. system calls, cryptographic function) with side-effects or returning
complex data structures. Note that this kind of C/S is different from the one we have con-
sidered so far, since it modifies permanently the value of a lhs (inside Σ+), while csp_expr
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affects a single evaluation of any expression. For example, C/S injection allows to declare
that at some location, variable eax receives a fresh value (which will last along the trace
until eax is rewritten), while csp_expr allows to declare that at some location, variable
eax evaluates as if it were unconstrained (with no impact on the remainder part of the
trace). C/S injection can be handled similarly to C/S in expression evaluation. Due to
space limitation, we only sketch the idea. Contrarily to csp_expr, concretizations defined
by csp_mem are not ensured to be correct, as the symbolic memory state is modified
without any additional (correctness) constraint. We thus denote it Sc. We introduce a
new function:

csp_inject : loc × Instr × State→ (lhs 7→ {Sc,S})

which takes as argument a location, an instruction and a symbolic state, and returns
a map from lhs to decisions, which are here limited to C and S. Intuitively, the map
represents the modifications which have to be performed on the current symbolic memory
state Σ∗ before the symbolic execution goes on.

Discussion Altogether, these extensions provide a very fine control over the C/S pol-
icy, allowing for example to encode the subtle differences between correct concretization,
incorrect concretization, recursive concretization and atomic concretization.

4.3.4 Application:Encoding Standard C/S Policies
To illustrate how our language works, we show the encoding of several state-of-the-art

policies from the literature, not yet covered in previous sections.
For instance, CUTE and DART [GKS05; SMA05] concretizes both read and write

addresses, as well as part of non-linear operations (here: left operand of any × operator).
The associated policy is shown in Table 4.3.

Table 4.3: CUTE/DART policy

∗ :: 〈?i〉 :: (@ !�) ≺ !i :: ∗ ⇒ C
∗ :: 〈?i〉 :: (!� × ??) ≺ !i :: ∗ ⇒ C

default ⇒ P

A variant for memory operations consists in concretizing also all non-tainted expres-
sions [HG12]. The corresponding policy is shown in Table 4.4, where T̂Σ+(e) indicates
whether an expression e is tainted or not in a given extended memory state Σ+ (cf. Sec-
tion 4.3.3).

Table 4.4: CUTE/DART policy with tainting

∗ :: 〈?i〉 :: (@ !�) ≺ !i :: ∗ ⇒ C
∗ :: ∗ :: ∗ :: ¬T̂Σ+(!�) ⇒ C

default ⇒ P
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The approach followed in EXE [Cad+08] in case of multi-level dereferencement consists
in concretizing all r/w expressions but the most nested one. The encoding of such a policy
is shown in Table 4.5.

Table 4.5: EXE policy

∗ :: 〈?i〉 :: (@ !�) ≺ (@ ??) ≺ !i :: ∗ ⇒ C
default ⇒ P

It is important here to use ≺ rather than �

Finally, the policy in Mayhem [Avg+16; Cha+12] consists in concretizing all write
expressions while keeping read expressions symbolic as long as they cannot take too many
values (otherwise, concretizing them). We need here to consider Σ+ enriched with an
interval analysis. The encoding is then given in Table 4.6, where cardI(e) gathers the
number of possible values for e from the interval information available in Σ+.

Table 4.6: Mayhem policy

∗ :: 〈@?a := ??〉 :: 〈!a〉 :: ∗ ⇒ C
∗ :: 〈?i〉 :: (@!�) ≺ !i :: cardI(!�) < 1024 ⇒ P
∗ :: 〈?i〉 :: (@!�) ≺ !i :: ∗ ⇒ C

default ⇒ P

Summary Table 4.7 presents a summary of the kinds of C/S policies CSml can encode,
together with the required extension of the language. It is remarkable that CSml can
encode all popular C/S policies despite a limited language. Hence, we think that our
rule-based language manage to capture the crucial aspects of current C/S policies.

Limits We do not know of any major existing C/S policy that cannot be encoded into
CSml. Yet, the framework has some limitations, coming from both the ordered evaluation
of guard predicates and the very restricted communication between those predicates. Here
are two such limitations.

• A C/S policy does not depend on the symbolic state we are building, for example we
cannot decide to concretize a term if all its leaves (variables) are already concretized.

• A C/S policy does not depend on the formula we are solving. For example, we
cannot compute a path predicate, pass it to a solver (or to a simplifier) and then
request concretization or symbolization depending on the solver’s output.

Note, however, that the extended memory state Σ+ does allow to overcome most of
the above limitations, assuming one is willing to store (resp. to query) very complex
information into (resp. from) Σ+. In our view, Σ+ should be used with care, only as a
last resort.
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Table 4.7: Encoding of C/S policies

policy language
minimal concretization [minimal] core language

recursive concretization extended ≺
atomic concretization [atomic] extended ≺ and var

incorrect concretization [incorrect] extended decisions
r/w full-concrete [dart/cute] core language
r/w full-symbolic [pathcrawler] core language
r/w domain restriction [osmose] extended decisions

r/w multi-level [exe] extended ≺
r/w taint-based [HG12] extended Σ+

r/w dataflow-based [mayhem] extended Σ+

4.4 Implementation

The C/S policy mechanism presented so far has been integrated into Binsec/se [Dav+16b].
An overview of the modified architecture is shown in Figure 4.4. The C/S policy is spec-
ified in a textual format close to CSml. Subsequently, while the SE engine creates the
path predicate, the C/S policy is queried for each encountered expression (Section 4.2.1)
via a hook function, instantiated from the CSml specification.

Binsec/SE
expr

SMT Solvers
(Z3, Boolector, CVC4,...)

User inputs

Pinsec

executable
binary

trace

Path
predicate

file SAT (+ model)
UNSAT/Timeout

DSE

Binsec Framework

DBA
decoder

static
analysis

disassembler

C/S
policy

{C, S, P } - rule 1
- rule 2
- …….

C/S policy
engine

config
(JSON)

Figure 4.4: CSml support in Binsec/se

This version of Binsec/se is currently the first SE tool supporting high-level specifica-
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tion of a wide range of C/S policies. The core engine is fully functional: all experiments
of Section 4.5 have been carried out with it. The whole CSml core language is sup-
ported. Extensions still under development are extended memory states (taint and heap
information), C/S injection, richer decisions, subterms and predicates.

4.5 Experiments

In this section three experiments are carried out with CSml and Binsec/se. The aim
is to evaluate the performance and to compare the benefits brought by different policies.
The three different evaluations are the following:

• First, we perform a large scale study on various benchmarks: some from samate [NIS16],
some malwares and all the coreutils. The objective was to study the impact of differ-
ent policies targeting memory reads and writes. This evaluation aims at answering
the following two research questions:

– RQ 1: Do C/S policies have a significant impact on SE in terms of the quality
of results?

– RQ 2: Is there a best C/S policy for read/write operations – among standard
policies?

• Second, we study the overhead of rule-based C/S specification in comparison to
hardcoded ones. This benchmark the following two research questions:

– RQ 3 What is the extra-cost of rule-based C/S specification ?

– RQ 4 Is it affordable, i.e is the extra-cost low w.r.t solving time ?

• Last, we are interested in studying the impact of C/S policies in terms of path
predicate solving time. The goal is to study the solving time evolution with regard
to the path length and the solver used. The research question addressed is:

– RQ 5 Do all solvers handle all policies equally ?

Policies. For this three experiments we are considering 5 different C/S policies handling
diffferently memory reads and writes. Policies are: CC, CP, PC, PP*, PP, where the first
letter indicates whether read addresses are concretized (C) or propagated (P). The second
letter indicates the same for write addresses in memory. PP* is an original policy where
all read/write addresses are kept logic but the base and stack pointer are concretized (i.e
on x86 registers esp and ebp are concretized). While CC and PP are standard policies
the others are rather new. Reasoning logically about the memory is known to be difficult
for DSE engines and SMT solvers. As a consequence these policies are chosen to assess
and benchmark the policies on memory operations.
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4.5.1 Quantitative Evaluation

This experiment is performed over 167 programs (x86 executable codes) – composed
of programs from NIST/SAMATE [NIS16] (a standard benchmark for program analysis),
all Unix coreutils and several Windows malware from VXHeaven [VXH16], for a total of
45,242 solver queries. Details can be found in Table 4.8. All instructions are traced, except
calls to library functions which are stubbed by symbolic values (fresh logical variables).
The solver is Z3, with a time-out of 30 seconds.

Table 4.8: Benchmark characteristics

category #prog # trace instr # trace branch
max avg max avg total

samate 50 5,000 2,772 1,177 333 16,554
coreutils 100 5,000 1,572 1,053 171 17,198
malware 17 5,000 3,739 1,539 675 11,490
total 167 5,000 2,151 1,539 270 45,242

We measure the influence of these policies in the following way: for each benchmark
program, we consider an arbitrary (but reproducible) initial concrete execution and we ask
the SE engine to iteratively invert every condition along the initial execution, leading to a
set of new path predicate computations and solver queries. We record for each policy the
number of queries which have been successfully solved (sat), proved infeasible (unsat)
or which have triggered a time-out (TO). Note that only the first category leads to new
test input and (hopefully) better code coverage.

Results and conclusion Part of results are summarized in Tables 4.9 and 4.10. Firstly,
[RQ 1] the choice of C/S policy may greatly affect the outcome of SE: there are ≥5x
more sat results on 20/167 examples, and up to 286x more sat results on one program.
Secondly, [RQ 2] there is no clear hierarchy between the considered policies. Indeed,
even if PP* performs very well on many examples — PP* is the best policy on 41/167
examples, and it is optimal on 117/167 examples (Table 4.10), the global number of
successfully solved instances is quite similar for any policies but PP (Table 4.9). Actually,
while a more symbolic policy leads in theory to more satisfiable queries, it may also
come at the price of harder-to-solve formulas and time-outs. These results are a strong
argument in favor of a generic C/S mechanism.

The major threats to validity are the representativeness of the experimental setting
(policies, programs) and internal bugs in the SE tool. We mitigate these threats through
using standard policies and variants of them as well as a large program set coming
from three distinct well-known and publicly-available benchmarks. Moreover, we rely
on publicly-available tools (SE, solver) and results have been crosschecked for internal
validity.
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Table 4.9: Summary of #SAT, #UNSAT and #TO (167 programs and 45,242 queries,
TO 30sec)

#SAT #UNSAT #TO
CC 4,518 40,712 12
PC 4,436 38,897 1,909
CP 4,651 39,310 1,281
PP* 4,515 31,320 9,407
PP 3,340 25,037 16,865

total number of queries: 45,242

Table 4.10: Best and optimal policies

samate coreutils malware total
opt best opt best opt best opt best

CC 20 0 44 1 5 0 69 1
PC 20 2 49 4 6 1 75 7
CP 23 1 61 11 4 0 88 12
PP* 36 12 71 24 10 5 117 41
PP 33 9 36 7 7 2 76 18

total number of programs: 167 - best (resp. opt): number of programs for which the considered policy
returns the strictly highest (resp. highest) number of SAT answers, w.r.t. the other policies
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4.5.2 Rule-Basd Language overhead
We evaluate the overhead of our parametric C/S policy mechanism. We want to

answer the two following questions: RQ 3: What is the extra-cost of rule-based C/S
specification, especially w.r.t. hard-coded policies (by mean of callback functions) and no
C/S policy at all? RQ 4: Is it affordable, i.e. is the extra-cost low w.r.t. solving time?

Protocol We reuse the experimental setting of the previous evaluation. We consider
two metrics: the cost of formula creation – which is directly affected by C/S policies,
and the ratio between formula creation and formula solving. We record these metrics for
the 5 previous policies, implemented either in CSml or through native callbacks, and we
consider a baseline consisting of SE without any C/S policy.

Table 4.11: Overhead evaluation

min max average
base PP 0.04% 3% 0.3%

CC 0.1% 17% 1.2%
rule-based CP 0.1% 23.5% 1.45%
C/S policy PC 0.08% 12.8% 0.85%

PP* 0.08% 12.3% 0.95%
PP 0.05% 4% 0.48%
CC 0.05% 8.5% 0.5%

hard-coded CP 0.05% 8.2% 0.5%
C/S policy PC 0.05% 8% 0.45%

PP* 0.05% 6% 0.45%
PP 0.04% 3% 0.3%

Ratio between the cost of path predicate computation (impacted by C/S) and the whole cost
(i.e. formula creation + formula solving). Note that the time for formula solving does not depend on

the way C/S is implemented (rules, hard-coded, no C/S).

Results and conclusion Table 4.11 reports the ratio between formula creation and
formula creation plus solving. Note that solving time does not depend on the way C/S is
implemented. [RQ 3] CSml does lead to a more expensive path predicate computation
(average: x3 w.r.t. hard-coded callbacks and up to x5 w.r.t. no C/S at all, at worst x7 on
some examples), yet [RQ 4] the cost of predicate computation is still negligible (average
of 1.45% for the most expensive C/S policy; maximum of 23% on some easy-to-solve path
predicates) w.r.t. the cost of predicate solving. Hence, our rule-based C/S mechanism
brings extra-flexibility at only a very slight extra-cost.

Threats to validity: besides issues discussed in the previous evaluation, the considered
policies are rather simple w.r.t. the expressive power of CSml. While the study is of
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interest because these policies are representative, further investigations are required for
complex CSml policies.

4.5.3 Computation time benchmark
The first experiments have been carried out on a single program path which length

is 377309 instructions long. On this path, we solved the path predicate for path length
ranging from 1 to 377309 with the 5 different C/S policies. The goal was to evaluate the
impact of the C/S policy on the solving time with regard to the path length. We expect
to be able to classify which solver better handle each kind of C/S policies. Note that
benchmarks were performed with the highest level of optimization (CRH) as described in
Chapter 7.

By solver. The Figure 4.5, shows the results performed on the 5 policies and 5 different
solvers using a 2 minutes timeout. As expected CC outperform the other policies as it
constraints both read and write addresses in memory. Contrariwise PP barely overcome
the 2550 path depth thanks to boolector. PP* provides a good alternative as it con-
cretizes read/writes on the stack. The only solver to solve the whole path is Yices in CC
followed by mathsat that succeed in solving a 81,960 instructions long path predicate.

By policies. The Figure 4.6, shows the results by policies and for each solver. As
solvers deal differently with the different theories we wanted to check if some policies
were better handled by a given solver. Results, speak by themselves while Yices surpass
all other solvers for policies reduce memory (array) operation it performs very bad on PP
policy. Contrarily, boolector is the worst for CC but outperform all the others solvers
for CP,PC and PP. As an outcome, this experiment shows that the solver choice have a
strong impact on the policy employed.

Table 4.12: Best solver summary

CC CP PC PP* PP
best Yices boolector boolector boolector boolector

(#tr.len) 377,309 5,456 6,160 2,700 2,550
worst boolector mathsat mathsat mathsat mathsat

(#tr.len) 50,938 174 210 987 987

These two experiments allowed to highlight the solving time disparity between policies,
strenghtening the approach of modular policies. It also highlighted a great disparity
between solvers which, as we can notice, deal very differently with concrete/symbolic
memory accesses. Furthermore, this highlight which solvers best fits each policy and
gives a good sampling (truth table) of what solving time is to except depending on the
policy and the solver. Table 4.12 gives the overall overview of which solver best and worst
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Z3 �CC �CP �PC �PP* �PP
500 0.02 0.35 0.34 0.03 0.92
1000 0.03 0.66 0.83 0.03 1.03
10,000 0.07 X X X X
100,000 X X X X X
377309 X X X X X
max 62540 2581 2553 2442 1353

(a) Z3 solving time: Table & Graph

boolector �CC �CP �PC �PP* �PP
500 0.02 0.2 0.1 0.08 0.46
1000 0.02 0.26 0.16 0.14 0.93
10,000 0.05 X X X X
100,000 X X X X X
377309 X X X X X
max 50938 3456 6160 2700 2550

(b) boolector solving time: Table & Graph

CVC4 �CC �CP �PC �PP* �PP
500 0.04 10.25 11.17 0.06 9.54
1000 0.04 30.4 74.5 0.11 7.42
10,000 0.44 X X X X
100,000 X X X X X
377309 X X X X X
max 53540 1260 1200 1575 1280

(c) CVC4 solving time: Table & Graph

Yices �CC �CP �PC �PP* �PP
500 0.02 1.54 0.19 0.02 0.17
1000 0.02 3.76 0.75 0.03 0.2
10,000 0.06 X X X X
100,000 10.7 X X X X
377309 54.37 X X X X
max 377309 1280 3492 2484 1525

(d) Yices solving time: Table & Graph

mathsat �CC �CP �PC �PP* �PP
500 0.03 X X 0.03 82.1
1000 0.03 X X 0.05 X
10,000 0.32 X X X X
100,000 X X X X X
377309 X X X X X
max 81960 174 210 1270 987

(e) mathsat solving time: Table & Graph

Figure 4.5: C/S policies benchmark by solvers50
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CC �Z3 �Btr �CVC4 �Yices �Mtsat
500 0.02 0.02 0.04 0.02 0.03
1000 0.03 0.02 0.04 0.02 0.03
10,000 0.07 0.05 0.44 0.06 0.32
100,000 X X X 10.7 X
377309 X X X 54.37 X
max 62540 50938 53540 377309 81960

(a) CC solving time: Table & Graph

CP �Z3 �Btr �CVC4 �Yices �Mtsat
500 0.35 0.2 10.25 1.54 X
1000 0.66 0.26 30.4 3.76 X
10,000 X X X X X
100,000 X X X X X
377309 X X X X X
max 2581 3456 1260 1280 174

(b) CP solving time: Table & Graph

PC �Z3 �Btr �CVC4 �Yices �Mtsat
500 0.34 0.1 11.17 0.19 X
1000 0.83 0.16 74.5 0.75 X
10,000 X X X X X
100,000 X X X X X
377309 X X X X X
max 2553 6160 1200 3492 210

(c) PC solving time: Table & Graph

PP* �Z3 �Btr �CVC4 �Yices �Mtsat
500 0.03 0.08 0.06 0.02 82.1
1000 0.03 0.14 0.11 0.03 X
10,000 X X X X X
100,000 X X X X X
377309 X X X X X
max 2442 2700 1575 2484 987

(d) PP* solving time: Table & Graph

PP �Z3 �Btr �CVC4 �Yices �Mtsat
500 0.92 0.46 9.54 0.17 82.1
1000 1.03 0.93 7.42 0.2 X
10,000 X X X X X
100,000 X X X X X
377309 X X X X X
max 1353 2550 1280 1525 987

(e) PP solving time: Table & Graph

Figure 4.6: C/S policies benchmark by policy 51
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handle each policies and gives the trace length expected to be solved with a 2 minutes
timeout. Once again being able to adapt the policy appeared to be crucial depending on
the solver at hand.

4.6 Toward extending CSml to syscall/libcalls and
more

4.6.1 Definitions

As extension of the policy mechanism formalized and developped for expressions, we
extended this mechnanism to library calls, syscalls and undecoded instructions. These are
the three main vectors of non-determinism inputs in the DSE execution. Extending C/S
for this, would allow to decide in a flexible way whether to concretize some parameter-
s/return values whether to symbolize them. Using this method, irrelevant functions calls
can simply be ignored or concretized while really interesting functions can be symbolized.
Thus we proposed a stub mechanism integrating C/S actions. This mechanism is based
on the C/S injection extension described earlier in the Chapter. Intuitively, a stub is
defined as a sequence of assignments in which each lhs is assigned a value based on an
action ρ∗ defined by ρ∗ , {Sc,Se,S} selected from a policy. We denote Sc the unsound
concretization where the lhs is replaced by an arbitrary constant value. We also denote
Se the replacement of a lhs by a logical expression. Let us recall that a lhs is defined by
lhs ::= v | v{i, j} | @[ e ]. Thus a stub is a sequence of re-assignement of variables (regis-
ters) or memory cells. In addition a stub should be shipped with a policy indicating what
action to perform on each lhs and a possibly a function providing a specific propagation
expression for that lhs in the case the associated action is Se.

Formally. A stub St, is defined by a tuple St , (NSt,CSt,PSt) where NSt , {Lhs}
defines the set of lhs modified by the stub, CSt , Lhs × Σ∗ → ρ∗ defines the actions to
perform on a given lhs (as lhs ⊂ Expr). Finally, PSt , Expr × Σ∗ → Expr defines the
function that performs the propagation for the given lhs and return an expression Expr.

We propose a new evaluation operation stub_exec for stub Lhs:

stub_exec(Σ∗, ϕ, lhs) ,


Σ∗(lhs)← fresh, ϕ ∧ lhs = fresh if ρ = S
Σ∗(lhs)← ϕe, ϕ ∧ φ′ ∧ lhs = ϕe if ρ = Se,Σ∗(lhs)← ϕe, e `cs• ϕe, φ′
Σ∗(lhs)← C,ϕ ∧ lhs = C if ρ = Sc, C , evalΣ(lhs)

 ρ , CSt(Σ, lhs)

(4.1)

Finally, a stub can be defined as the execution of stub_exec on all the lhs of NSt. We
thus formalize the whole stub execution as defined below:

stub
Σ∗n, ϕn , stub_exec(Σ∗, ϕ,N0) ◦ ... ◦ stub_exec(Σ∗n − 1, ϕn−1,Nn)

l,Σ∗, ϕ, stub(N , C,P) l + 1,Σ∗n, ϕn,∆(l + 1)
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Stub kind While doing DSE we need to consider three major kind of stubs. First,
external library stubs in the case we do not execute them symbolically, then syscall stubs
(dependant of the system and kernel version) and finally not decoded instruction which,
even though we can not give them a precise semantic we can approximate their side-effects
with stubs. These three kinds of stubs implemented are encompassed by the formalization
hereabove.

4.6.2 Library call stubs

Libcalls are any functions (most notably shared library functions) that are inten-
tionally not symbolically executed to lighten the DSE computation. However handling
side-effects of this functions is essential to preserve the execution soundness. Thus various
stubs are implemented for multiples functions from the libc or from the Windows API.

Call convention Libcalls stubs have to deal with the call convention used by programs.
The call convention defines the way parameters are sent to the callee and also defines how
the stack should be cleaned-up. There are typically two modes, caller-based and callee-
based where the responsability to restore the stack is given respectively to the caller or
the callee. Secondarily it also defines parameter order on the stack, in other words either
they are pushed left-to-right (LTR) or right-to-left (RTL). Known call conventions are:

• cdecl used in almost all Unix-based systems. All parameters are transmitted
through the stack and the caller is responsible for stack restoration.

• stdcall used in Windows. All parameters are sent using the stack, but is callee-
based so the function called restore the stack

• fastcall The first two parameters are put respectively in ecx and edx. All the
others are pushed onto the stack. This convention is callee-based.

All this convention are RTL conventions. Table 4.13 summaries the properties of the
different call conventions. All these considerations have an impact on the way stubs are
handled.

Table 4.13: Call convention summary

Name Parameters Order Stack
order on stack clean-up

cdecl stack RTL Caller
stdcall stack RTL Callee
fastcall ecx,edx,stack RTL Callee
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Formally, let’s consider a call convention cvt , {cdecl, stdcall, fastcall} and a func-
tion get_args(cvt, ith)→ Expr which for a given call convention and parameter number
returns the corresponding expression. As a matter of exemple get_args(cdecl, 0) =
@[esp − 4] or get_args(fastcall, 1) = edx. Similarly, we define epilog functions per-
formed after a stub to perform a gentle clean-up of the stack. For this, we consider a
function card(St) → N the function which for a given stub returns its cardinal (i.e its
number of parameters). Figures 4.7 gives the semantic of the epilog functions.

stdcall − epilog Σ∗new , Σ∗[esp← fresh] ϕnew , ϕ ∧ fresh = (Σ∗(esp) + (card(St)× (addr_size/8)))
Σ∗, ϕ, stub St Σ∗new, ϕnew

cdecl − epilog Σ∗, ϕ, stub St Σ∗, ϕ

Figure 4.7: Epilog function semantic

Example To make it clearer we present the stub definition of void *memcpy(void
*dst, void *src, size_t size). We have card(memcpy) = 3 and NSt , {@[dst],@[src],
size, eax} with eax the returned value, which according to the specification is equal to
dst at return. We want to propagate variables @[dst] and @[src], in addition we also
want to concretize size which usually has an undetermined number of iterations. Thus,
we have CSt , {(@[dst] 7→ P), (@[src] 7→ P), (size 7→ C), (eax 7→ P)}. Lastly, we define
the propagation function PSt given in figure 4.8.

4.6.3 System call stubs

Syscalls, are dependant on the OS Linux,Windows and dependent on the Application
Binary Interface (ABI) on Linux. Syscalls are distinguished by the number given in eax.
Handling syscall is highly kernel dependent, however, easier than libcalls as there is not
calling convention neither the need of epilog. Yet, unless having a dynamic instrumenter
working at kernel level, there is no other way than making stubs for syscalls.

PSt(e) ,


dst if e = eax
@[src] if e = @[dst]
ε if e = @[src]
ε if e = size

(4.2)

Figure 4.8: memcpy(dst, src, size) propagation function stub
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4.6.4 Instruction stubs
The symbolic aspect of DSE allows to emancipate from the strict IR decoding. Indeed,

due to the variety of x86 instructions, it is difficult to model all of them precisely. That is
why instruction stubs comes handy to give an approximated modeling of an instruction,
either over-approximated by symbolizing either under-approximated by concretizing. The
purpose is to keep the soundness of execution. Let us take the example of rdtsc.

RDTSC is an instruction returning in both edx and eax the numbers of tick since the
last reset of the CPU read in the TSC register. Modeling precisely the content of the TSC
content is not simple (and thus not decoded in DBA). Hence, we have NSt , {edx, eax},
and the propagation function can be modelled either by calling the real rdtsc and putting
the result in the two registers or more lazily by symbolizing the content edx,eax. The
second approach consists in choosing S and a relative fair approach to over-approximating
the execution while keeping a satisfiable path predicate.

4.6.5 Implementation
The formalization hereabove, and the implementation made in Binsec/se only allows
one stub per function or syscall. As a consequence, it forbids to select a different stub for
the same function depending on the context.

Each new stub should be implemented at three levels:

• making the policy specification with parameters and returned values;

• implementing the data gathering in Pinsec (used by evalΣ(e));

• implementing in Binsec/se the propagation function PSt modeling the behavior for
each parameters or returned values.

Figure 4.9 provides an overview of the global integration of the stub mechanism in the
DSE engine.
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Binsec/SE
call expr

SMT Solvers
(Z3, Boolector, CVC4,...)

User inputs

Pinsec
- Gather call infos 
for the given stubs

executable

Path
predicate

file SAT (+ model)
UNSAT/Timeout

DSE

Binsec Framework

C/S policy

{C, S, P }

C/S policy
engine

config (JSON)

Stub policy
- malloc_pol

- strcpy_pol

…..

Stub data
#1 malloc_t

#2 strcpy_t

…..Trace

other
concrete 
infos

{SKIP,
  INTO}

name: “malloc”
action: SKIP
policy:
    - size:C
    - ret: C

Figure 4.9: Stubs C/S architecture
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Chapter 5

Backward-Bounded DSE

This chapter presents a scalable and robust method for solving infeasibility queries, a
standard problem encountered in reverse-engineering. bb-dse does not supersede existing
DSE algorithm but rather complement them by addressing infeasibility queries in a precise
manner.

Problem Dynamic methods only address reachability issues, namely feasibility ques-
tions, i.e. verifiying that certain events or setting can occur, e.g. that an instruction in
the code is indeed reachable. Contrariwise, many questions encountered during reversing
tasks are infeasibility questions, i.e. checking that certain events or settings cannot occur.
It can be used either for detecting obfuscation schemes, e.g. detecting that a branch is
dead (i.e. it cannot be taken) or to prove their absence, e.g. proving that a computed
jump cannot lead to an improper address.

These infeasibility issues are currently a blind spot of both standard and advanced
disassembly methods. Dynamic analysis and DSE do not answer the question because
they only consider a finite number of paths while infeasibility is about considering all
paths. Also, (standard) syntactic static analysis is too easily fooled by unknown patterns.
Finally, while recent semantic static analysis approaches [BHV11; BR10; KV10; SMS11]
can in principle address infeasibility questions, they are currently neither scalable nor
robust enough.

At first sight infeasibility is a simple mirror of feasibility, however from an algorithmic
point of view they are not the same problem. Indeed, since solving feasibility questions
on general programs is undecidable, practical approaches have to be one-sided, favoring
either feasibility (i.e. answering “feasible” or "I don’t know”) or infeasibility (i.e. answering
"I don’t know” or “infeasible”). While there currently exist robust methods for answering
feasibility questions on heavily obfuscated codes, no such method exist for infeasibility
questions.

Motivation Let us consider the obfuscated pseudo-code given in Figure 5.1. The func-
tion <main> contains an opaque predicate in 1 and a call stack tampering in 2 (cf. 8.1
and 8.2).

Getting the information related to the opaque predicate and the call stack tampering
would allow to:
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<main>: <fun1>:

if (C) { 1 .....

call <fun1> push <X> 2
//junk a ret

}
else {

call <fun2> b
}
//junk c <fun2>:
ret //fake end of fun .... d
<X>: ret
//payload

Figure 5.1: Motivating example

• 1 to know that <fun1> is always called and reciprocally that <fun2> is never
called. As consequence b and d are dead instructions;

• 2 to know that the ret of <fun1> is tampered and never return to the caller.
As a consequence a and c are dead instructions. Such trick would also allow to
hide the real payload located at <X>.

Hence the main motivation is not to be fooled by such infeasibility-based tricks that
slow-down the program reverse-engineering and its global understanding.

Goal and challenges In this chapter, we are interested in solving automatically infea-
sibility questions occurring during the reversing of (heavily) obfuscated programs. The
intended approach must be precise (low rates of false positives and false negatives) and
able to scale on realistic codes both in terms of size (efficient) and protection – including
self-modification (robustness), and generic enough for addressing a large panel of infeasi-
bility issues. Achieving all these goals at the same time is particularly challenging.

Proposition We present Backward-Bounded Dynamic Symbolic Execution (bb-dse),
the first precise, efficient, robust and generic method for solving infeasibility questions.
To obtain such a result, we have combined in an original and fruitful way, several state-
of-the-art key features of formal software verification methods, such as deductive veri-
fication [Lei05], bounded model checking [Bie+99] or DSE. Especially, the technique is
goal-oriented for precision, bounded for efficiency and combines dynamic information and
formal reasoning for robustness.

Impact Backward-Bounded DSE does not supersede existing DSE approaches, it com-
plements them by addressing infeasibility questions. Altogether, this work paves the way
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for robust, precise and efficient disassembly tools for obfuscated binaries, through the
careful combination of static/dynamic and forward/backward approaches.

Table 5.1: Disassembly methods for obfuscated codes

feasibility infeasibility efficiency robustness
query query

dynamic analysis X/×(†) × X X

DSE X × × X

static analysis
X X/×(††) X ×

(syntactic)
static analysis × X × ×
(semantic)
bb-dse × X(‡) X X

(†): follow only a few traces
(††): very limited reasoning abilities

(‡): can have false positive and false negative, yet very low in practice

5.1 Formalization
Preliminaries We consider a binary-level program P with a given initial code address
a0. A state s , (a, σ) of the program is defined by a code address a and a memory state
σ, which is a mapping from registers and memory to actual values (bitvectors, typically
of size 8, 32 or 64). By convention, s0 represents an initial state, i.e. s0 is of the form
(a0, σ). The transition from one state to another is performed by the post function that
executes the current instruction. An execution π is a sequence π , (s0 · s1 · ... · sn), where
sj+1 is obtained by applying the post function to sj (sj+1 is the successor of sj). Similarly,
we call sj the predecessor of sj+1 if sj+1 is obtainted by application of the post function
on sj.

Let us consider a predicate ϕ over memory states. We call reachability condition a
pair c , (a, ϕ), with a a code address. Such a condition c is feasible if there exists a state
s , (a, σ) and an execution πs , (s0 · s1 · ... · s) such that σ satisfies ϕ, denoted σ |= ϕ. It
is said infeasible otherwise. An feasibility (resp. infeasibility) question consists precisely
in trying to solve the feasibility (resp. infeasibility) of such a reachability condition.

These definitions do not take self-modification into account. They can be extended to
such a setting by considering code addresses plus waves or phases [Bon+15].

Principles We build on and combine 3 key ingredients from popular software verifica-
tion methods:

• backward reasoning from deductive verification, for precise goal-oriented reasoning;
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• combination of dynamic analysis and formal methods (from DSE), for robustness;

• bounded reasoning from bounded model checking, for scalability and the ability to
perform infeasibility proofs.

The initial idea of bb-dse is to perform a backward reasoning, similar to the one of
DSE but going from successors to predecessors (instead of the other way). Formally, DSE
is based on the post operation while bb-dse is based on its inverse pre. Perfect backward
reasoning pre∗ (i.e. fixpoint iterations of relation pre, collecting all predecessors of a given
state or predicate) can be used to check feasibility and infeasibility questions. But this
relation is not computable.

Hence, we rely on computable bounded reasoning, namely prek, i.e. collecting all the
“predecessors in k steps” (k-predecessors) of a given state (or predicate). Now symmetry
does not hold anymore: while prek can answer positively to infeasibility queries (if a
predicate has no k-predecessor, it has no k′-predecessor for any k′ > k and cannot be
reached), but cannot falsify them (because it could happen that a predicate is infeasible,
for a reason beyond the bound k). Moreover, it is efficient as the computation does not
depend on the program size or trace length, but on the user-chosen bound k.

In practice, checking whether prek = ∅ can be done in a symbolic way, like it is done in
DSE: the set prek is computed implicitly as a logical formula (typically, a quantifier-free
first-order formula over bitvectors and arrays), which is unsatisfiable iff the set if empty.
This formula is then passed to an automatic solver, typically a SMT solver [12] such as
Z3.

Yet, backward reasoning is still very fragile at binary-level, since computing pre in
a perfect way may be highly complex because of dynamic jumps or self-modification.
The last trick is to combine this prek reasoning with dynamic traces, so that the whole
approach benefits from the robustness of dynamic analysis. Actually, the prek is now com-
puted w.r.t. the control-flow graph induced by a given trace π – in a dynamic disassembly
manner. We denote this sliced prek by prekπ.

Hence we get robustness, yet since some real parts of prek may be missing from prekπ,
we now lose correctness: we may have false positive FP (because prekπ will be incomplete
w.r.t prek), additionally to the false negative FN due to “boundedness” (because of too
small k). A picture of the approach is given in Figure 5.2.

Algorithm Considering a reachability condition (a, ϕ), bb-dse starts with a dynamic
execution π and iterates it in order to solve ϕ at the given location. The algorithm is
given in 2.

As a summary, this algorithm enjoys the following good properties: it is efficient
(depends on k, not on the trace or program length) and as robust as dynamic analysis.
On the other hand, the technique may report both false negative (bound k too short)
and false positive (dynamic CFG recovery not complete enough). Yet, in practice, our
experiments demonstrate that the approach performs very well, with very low rates of FP
and FN. Experiments are presented in Sections 8.1.4, 8.2.4, 10.1 and 10.2.

By convenience, we will not distinguish anymore between the predicate ϕ and the
reachability condition (a, ϕ) if a is clear from context.
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Algorithm 2: bb-dse algorithm
Input: a dynamic execution trace π, a reachability condition (a, ϕ)
Output: TS the infeasibility status of ϕ at location a
TS := ∅;
switch prekπ((a, ϕ)) do

case UNSAT: do TS := INFEASIBLE;
case SAT: do TS := UNKNOWN;
case TIMEOUT: do TS := TIMEOUT;

end
return TS;

pre≤k

paths over 
approximated

paths
lost (in 
computation)

post*
(forward DSE)

Figure 5.2: prek schema
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5.2 Solving Infeasibility Questions with bb-dse
We show in this section how several natural problems encountered during deobfusca-

tion and disassembly can be thought of as infeasibility questions, and solved with bb-dse.

Opaque predicates (OP) is a predicate always evaluating to the same value. Intu-
itively, to detect an opaque predicate the idea is to backtrack all its data dependencies
and gather enough constraints to conclude to the infeasibility of the predicate. Consid-
ering p = (a, ϕ) the pair address-predicate for which we want to check for opacity and π
the execution trace under attention we have:

• if p is dynamically covered by π, then returns FEASIBLE;

• otherwise, returns bb-dse (p), where INFEASIBLE is interpreted as “opaque”.

This obfuscation is addressed in detail in Chapter 8.

Call stack tampering Call stack tampering consists in altering the standard compi-
lation scheme switching from function to function by associating a call and a ret and
making the ret to return to the call next instruction. The ret is tampered (a.k.a vio-
lated) if it does not return to the expected return site pushed on the stack at the call.
This infeasibility problem can be addressed with the predicate @[esp{call}] = @[esp{ret}].
It compare the content of the value pushed at call @[esp{call}] with the one used to re-
turn @[esp{ret}]. If it evaluates to UNSAT, a violation necessarily occurs. A complete
taxonomy and detection algorithm is discussed in Chapter 8.

Opaque constant Similar to opaque predicates, opaque constants are expressions al-
ways evaluating to a single value. Let us consider the expression e and a value v observed
at runtime for e. Then, the opaqueness of e reduces to the infeasibility of e 6= v.

Dynamic jump closure When dealing with dynamic jumps, switch, etc., we might
be interested in knowing if all the targets have been found. Let us consider a dynamic
jump jump eax for which 3 values v1, v2, v3 have been observed so far. Checking the jump
closure can be done through checking the infeasibility of eax 6= v1 ∧ eax 6= v2 ∧ eax 6= v3.

Virtual Machine & CFG flattening Both VM obfuscation and CFG flattening usu-
ally use a custom instruction pointer aiming at preserving the flow of the program after
obfuscation. In the case of CFG flattening, after execution of a basic block the virtual
instruction pointer will be updated so that the dispatcher will know where to jump next.
As such, we can check that all observed values for the virtual instruction pointer have
been found for each flattened basic block. Thus, if for each basic block we know the
possible value for the virtual instruction pointer and have proved it cannot take other
values, we can ultimately get rid of the dispatcher.
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A glimpse of conditional self-modification Self-modification is a killer technique
for blurring static analysis, since the real code is only revealed at execution time. The
method is commonly found in malware and packers, either in simple forms (unpack
the whole payload at once) or more advanced ones (unpack on-demand, shifting-decode
schemes [Uga+15]).

The example in Figure 8.1 (page 106) taken from ASPack combines an opaque predicate
together with a self-modification trick turning the predicate to true in order to fool the
reverser. Other examples from existing malwares have been detailed in previous studies
(NetSky.aa [YD15]).

Dynamic analysis allows to overcome the self-modification as the new modified code
will be executed as such. Yet, bb-dse can be used as well, to prove interesting facts
about self-modification schemes. For example, given an instruction known to perform
a self-modification, we can take advantage of bb-dse to know whether another kind of
modification by the same instruction is possible or not (conditional self-modification). Let
us consider an instruction mov [addr], eax identified by dynamic analysis to generate
some new code with value eax = v. Checking whether the self modification is conditional
reduces to the infeasibility of predicate eax 6= v.

5.3 Benchmark against forward DSE
We compare bb-dse with standard forward DSE, as well as with (unbounded) back-

ward DSE. We are interested in comparing their efficiencies and their adequacy to infea-
sibility questions – through the distribution of their results, between SAT, UNSAT and
timeout. The experiment is performed on a trace of 115000 instructions and we check at
each conditional jump if the branch not taken is infeasible (UNSAT) or not (SAT), which
is equal to checking if the branch is dead. For bb-dse, we take the algorithm for opaque
predicate detection described in Section 5.2, with bound values k = 100 and k = 20. We
argue in latter experiments (Section 8.1) that k = 20 is a reasonable bound. We use the
forward DSE of Binsec/se, and backward DSE is obtained from bb-dse with a bound
set to ∞.

Results are presented in Table 5.2. While forward and backward DSE provide similar
results, bb-dse clearly surpasses them in terms of efficiency, spending less than a second
for every predicate without any timeout (≥ 2000 with DSE). From a result point of view,
bb-dse with k=16 returns very few UNSAT answers compared to the other methods (54
vs ≥ 7000). Actually, this was expected since DSE takes the whole path into account,
and while dead branches are rare in normal code, dead paths are very common.

Conclusion This preliminary experiment gives a clear demonstration on the advan-
tages of bb-dse over DSE on infeasibility questions. Indeed, besides the dramatic gap
in efficiency (which was of course expected since DSE depends on the whole size trace),
DSE reports far more infeasible branches – which would lead in practice to too many
false positives. These results were expected, as they are direct consequences of the design
choices behind DSE and bb-dse. On the opposite, bb-dse is not suitable for feasibility
questions.
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Table 5.2: Benchmark DSE versus bb-dse

bound Cond. branch Total
k #SAT #UNSAT #Timeout time

forward DSE / 575 7749 2460 17h43m
backward DSE ∞ 575 7748 2461 17h48m
bb-dse 100 3378 7406 0 18m78s
bb-dse 20 10730 54 0 4m14s

As such, we provide throughout benchmarks of bb-dse in Chapter 8 and real world
application in Chapter 10.
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Implementation & Optimizations
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Chapter 6

Dynamic Symbolic Execution Platform

6.1 Overview

Our DSE algorithm has been implemented in the multipurpose Binsec framework [DB15].
Far from being DSE centric, Binsec provides low-level API to decode and manipulate
instructions in DBA. At the top of it, static analyses, simulation features have been im-
plemented with some interaction in between them. Figure 6.1 shows the overall landscape
of functionalities.

Figure 6.1: Binsec features overview
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path π
(trace)

DSE

path predicate φ
(formula)

DBI Solver

status &
model

new inputs

Figure 6.2: Classic DSE analysis workflow

The DSE is usually performed by three components described in Figure 6.2. First, the
Dynamic Binary Instrumentation (DBI) generates an execution trace transmitted to the
symbolic execution engine which computes the path predicate and generates a formula
sent to an automatic solver. As a response, the solver returns a status and a model which
can optionally be used to generate new inputs. These inputs can subsequently be sent
back to the DBI to generate a new trace.

6.2 Dynamic Instrumentation

6.2.1 Introduction
Several different instrumentation systems are being used for DSE. Probably the most

famous is Pin [Luk+05] developped by Intel. It allows to instrument x86 programs both
32 and 64 bits by embedding at runtime a shared library that will hijack the normal
control flow of the program to instrument it. No debug feature is used by Pin which
helps bypassing basic anti-debugging tricks. In the same vein, DynamoRIO provides
similar functionalities [BZA12]. A possible alternative is the use of the virtualization
engine Qemu [Bel16] (developped by the awesome Fabrice Bellard). Last, the promising
Panda engine [Dol+15] based on TCG, LLVM and Qemu which unlike other DBI allows
repeatable instrumentation and backward execution.

6.2.2 Pinsec
Pinsec is the instrumenter developped for this thesis. Based on Pin, and developped

in C++ it accounts for approximately 2000 loc and is able to instrument both Linux and
Windows binaries. Execution traces are generated in protobuf3 to be parsable and used
in any language. Among advanced functionalities, it allows to gather function parameters
for some libc, and Windows API functions; it also allows to retrieve arbitrary values in
memory and registers. It eventually provides a mechanism for on-the-fly value patching
(mostly used to force a given path). Finally, via a messaging API, it allows some remote

3https://developers.google.com/protocol-buffers/
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control actions for dynamic interaction with the symbolic execution engine (see Section
6.6).

Configuration. Basic parameters given to the pintool are, -start-entrypoint to start at
the entry point of the program or more generically -start to begin at a specific address.
That is especially useful if we want to skip all the initializations performed at the begining
of the program. As a remplacement -function allows to provides a function name to
instrument which requires symbols to be present. The -out option is used to specify the
output trace file. To limitate the trace length or the instrumentation time -maxlength or
-timeout are available. Lastly, it is possible to activate the tracing of self-modification
layers with -trace-waves that will tag all addresses written in memory. If at some point of
the execution the program jumps on a tagged address a new wave information is recorded
in the trace.

In addition to parameters given via the command line, an instrumentation can be
configured via a JSON file, providing more advanced features (-config command line
argument). The configuration permits to define in a granular manner which function to
trace and which function to “skip”. It also allows to define the policy to adopt for all
library calls or syscalls, namely either to trace it or not, or to retrieve theirs values etc.

Input injection A key feature, for path selection and iterating paths is the ability to
inject inputs, or values during the execution, forcing the value of a certain register or
memory cell at some point of the execution. We define T , {R,M, I} the kind of inputs
with R a register, M a memory address, I an indirect pointer. The idea is to alterate
the dynamic execution of the program to patch values or to gather some value for later
usage (concretization etc). Indeed, these values can be later used for C/S injection in the
dynamic symbolic engine. We define A , {S, C, (Pt × Bv)} the set of possible actions
to perform for that input with S the pintool ignores it, C the value is retrieved and Pt
the value is patched with the given value. An input is as a rule of the form guard ⇒ A
of which guard defines the predicate where to apply the input action. This predicate is
defined by an adress, an occurence and W , {Be, Af} defining respectively before and
after the given address. An input rule is defined by:

type :: address :: when :: iter ⇒ action
T :: Bv :: W :: N ⇒ A ⇔

As a matter of example eax :: 0x801040 :: Be :: 0 ⇒ (Pt, 0x0) indicates
to patch eax with value 0x0 at the first occurence of location 0x801040 before the instruc-
tion is being executed.

Performances. This pintool was not especially design to run fast and not especially
designed to be compact (because of protobuf). For instance, at load-time all instructions
are cached for a quick posterior access. Yet, performing this task slow-down the effective
starting of the program. Additionally, we need to instrument the program at the instruc-
tion level while Pin also allows to instrument at the basic-block or function level which
is far more efficient. As a matter of appreciation the table 6.1 shows empirical statistics
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about instrumentation performances. The table shows the trace length, native execution
time compared to instrumentation time and the average execution time per instruction.
The benchmark was performed on a Windows virtual machine so all the results are rela-
tive to the performances of the VM. The initialization phase is quite slow, as consequence
longer trace have a better ratio of instruction/sec. The benchmark is composed of 6 pack-
ers later used for large scale benchmarks. It should be taken into account that a pintool
by design usually induces a slow-down from 7.8x to 20x [Luk+05] compared to native ex-
ecution when instrumenting at basic-block level. Thus, a significant time is spent in the
DBI itself independently from the pintool implemented. In addition, we perform analysis
at the instruction level which is very costly in terms of time. All the packers executions
take less than 3 minutes which is efficient-enough for automated analysis of large binaries
data-set.

Table 6.1: Pinsec execution time overhead comparison

#instrs native pinsec instrs
in (s) in (s) per sec

Aspack 377,310 0.015 75.69 4985
Expressor 635,285 0.995 169.84 3740
MoleBox 5,257,032 0.735 231.39 22719
Mystic 4,531,677 0.047 116.50 38899
PELock 2,389,016 0.165 189.68 12595
WinUpack 657,406 0.016 77.75 8455
Avg 2,307,954 0.329 143.47 16086.67

6.3 Symbolic Execution Engine

6.3.1 Introduction
As mentioned earlier, the symbolic execution engine is supposed to perform both the

path selection (Sel) and path predicate computation (C). Among existing DSE work-
ing at binary level, we can notice Mayhem [Cha+12], Fuzzball [Cas+13], S2E [CKC12],
Angr [Sho+16] and the promising recent Triton [SS15]. What differentiates them, is
mostly architectures supported, theories used for formulas, solvers supported, path cov-
ering strategies and additional analyses like abstract interpretation, tainting or data de-
pendencies.

6.3.2 Binsec/SE
Binsec/se is the symbolic engine developped in the Binsec platform. As the DBI en-

gine it is parameterized with JSON configuration files. At the time of writing it represents
more than 10K OCaml lines of code. Like most engines an analysis can be implemented
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using a callback mechanism (see Figure 6.3). It supports Z3, boolector, CVC4 and Yices.
Nonetheless, what differentiates it from the existing DSE engines are the modular path
predicate computation (i.e concretization/symbolization), all the optimizations imple-
mented at the formula level and the different stub mechanisms for library and system
calls. All these differences are elaborated in Part II and Chapter 7.

Path predicate computation

Path predicate computation is the cornerstone of computation. It is in charge to
evaluate the semantic of each instruction and update the path predicate accordingly. The
computation in Binsec/se also integrates the C/S policy mechanism. The path predicate
computation time is generally negligible compared to solving time [Dav+16a]. Meanwhile
for the sake of evaluation we measured the path predicate computation time for different
C/S policies (cf. 4).

Table 6.2: Path predicate computation time and instruction/seconds

trace len CC CP PC PP* PP
Aspack 377,310 22.87 23.02 18.67 19.19 17.34
Expressor 635,285 37.30 37.94 30.38 31.40 28.84
Crypter 1,170,108 69.79 71.01 61.04 61.51 57.73
PELock 2,389,016 136.79 141.81 122.30 114.82 109.32
WinUpack 657,406 51.45 49.83 43.16 47.58 41.15
Yoda’s Crypter 240,900 18.52 19.29 14.54 15.96 15.22

avg i/s 16245.02 15952.25 18856.30 18832.28 20289.41

The benchmark given in table 6.2 aims at evaluating the impact of C/S policies on
the path predicate computation. We compute both the execution time and the number
of instructions processed per seconds. The idea is to have a rough apreciation of the
throughput. For that, we selected few random binaries and performed the computation
on them. This includes the parsing of instructions in the protobuf trace, which represents
a significant amount of time. PP correspond roughly to the case where no C/S policies
is applied as everything is propagated like in standard DSE. The difference with CC is
only 4044 instructions per seconds which represent a gain of 19%. Considering CC to be
an heavy policy we can conclude that the C/S policies computation takes at most 20% of
the path predicate computation (still negligible compared to solving time).

Path selection

Beside a fine-grained control of a single execution trace, automatic multiple paths
exploration is also a desired feature of a DSE tool. Ideally, the path exploration engine
should allow either to fulfill some standard coverage requirements, or to focus on specific
parts of the code through dedicated (user-defined) search heuristics. It relies on a simple
API allowing to easily implement various exploration strategies. In particular, this API
offers a function select(S) returning the “best” trace from a set of traces S, w.r.t. a
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user-defined score function. Scores are built from several (predefined or dynamically
computed) traces characteristics, such as length, last instruction call-depth, distance to
a given target, etc. This approach allows to precisely define a wide-range of exploration
strategies. Several strategies are already implemented such as DFS, BFS, random path,
MinCall-DFS and MinCall-BFS [Bar+13]. The Depth-First-Search (DFS) strategy might
get stuck in narrow parts of the code and Breath-First-Search might get stuck in loops.
Thus, it is worth considering alternate strategies. For instance MinCall-DFS selects the
longest path having the lowest call depth. This strategy ensure to hit all the functions
while keeping the longest path possible to have a maximum coverage. MinCall-BFS works
similarly but consider the shortest path and the lowest call depth.

Analysis development

Internally, an analysis is represented as an OCaml class, which each analysis should in-
herit from. This class provides appropriate callbacks and data structures for implementing
any DSE-based analysis. Main callbacks are:

• pre_execution, post_execution triggered respectively once at the begining and once
at the end of the analysis;

• visit_instr_before, visit_instr_after triggered before (resp. after) every assem-
bly instruction of the trace;

• visit_dbainstr_before, visit_dbainstr_after triggered before (resp. after) every
DBA instructions of an x86 instruction;

Figure 6.3: BINSEC/SE analysis callbacks

A summary of all callback location calls is given in Figure 6.3. These callbacks allow
to apply specific actions at a specific step and/or location along the execution in a highly
configurable manner. They help developing new analyses without a deep understanding
of the whole inner-working of the DSE.
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6.3.3 Memory Management & Initial State
In standard DSE we usually assume argv and the environment variable env to be

inputs in the program memory. Later in the execution, allocated memory can also become
inputs. In practice, all the other memory addresses in memory are either not mapped,
or not accessible for writing due to theirs belonging to the kernel. This differs from the
closed quantifier-free array theory over the bitvectors used QF_ABV. Indeed, by default
an array is totally unconstrainted and the bounds are limited to the size of bitvector
indexes. Then, the solver is free to give a valuation for any unconstrainted memory cells
which can lead to meaningless results. To address this issue the main solutions remaining
to be implemented are:

• constraining the load operations by enforcing possible addresses,

• dumping the initial state,

• potentially using, taint analysis to force load operation to be performed at tainted
addresses (also called “controlable”).

6.4 Automatic Solving

6.4.1 Introduction
There are two kinds of automatic solvers used. First constraint-programming based

solvers like or-tools [Goo16b] from Google or also Colibri [Che+14]. Second, Satisfiability
Modulo Theories(SMT) solvers based on DPLL. Binary-level DSE requires bitvectors
theory and, in most cases, the array theory. Known solvers supporting these two theories
are Z3 [MB08], CVC4 [Det+14], boolector [NPB15] and Yices [Dut14].

Nevertheless, their difference tends to be very negligible as most of them now handle
the smtlib2 format [BFT16]. What differenciate solvers are the theories supported and
the usability features included like interactive or incremental modes.

6.4.2 Solving in Binsec/se
Binsec/se embeds an internal representation of formulas, subset of the SMTLIB2

acting only on bitvectors and arrays. This representation can be exported to SMTLIB2
as a common format with external solvers. Binsec/se does not provide direct binding
with solvers. The two ways to solve formulas are:

• files in SMTLIB2 format,

• interactive mode, for solvers supporting this functionality. This allows to use the
two commands push and pop to remove a posteriori, some terms of the formula.

Although we use a common format, some solvers may require specific processing. For
instance, some of them do not support timeout as command line argument or generated
models are not necessarily in the same format. Main differences lay in the support of
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arrays as function parameters. Indeed, Binsec/se uses two functions as syntactic sugar
for reading, or writing 32 bits values in an array. One of them is the load32_at function
given in listing 6.1. It is invoked the same way as select but returns a 32bits value. This
greatly improves the formula readability. Unfortunately, boolector does not support
arrays as function parameters, as a consequence it should be inlined.
(define -fun load32_at (( memory (Array (_ BitVec 32) (_ BitVec 8))) ; arg1

(addr (_ BitVec 32))) ; arg2
(_ BitVec 32) ; return

( concat ( concat ( concat
( select memory (bvadd # x00000003 addr ))
( select memory (bvadd # x00000002 addr )))
( select memory (bvadd # x00000001 addr )))
( select memory addr ))

)

Listing 6.1: load32_at SMT function

6.5 IDASec: DSE analysis vizualisation

As fullfilment of one of the contributions aiming at lifting analysis results to make them
usable for the reverse-engineer. I developed an IDA plugin called Idasec facilitating the
triggering of an analysis and the exploitation of results. This plugin represents more than
Python 7000 lines of code.

(a) Decoding (b) Trace view (c) Analysis configuration

Figure 6.4: IDASec main UIs

Basic features allow to request the DBA semantic for an instruction in order to un-
derstand its side-effect, as shown in Figure 6.4a. But the main purpose of Idasec is
to manipulate dynamic traces. Apart from being able to load a trace and vizualize it
(as shown in Figure 6.4b) it allows to highlight instructions executed, creates heatmap
of instructions and some dynamic disassembly features. In the later case, the idea is
to follow the trace and disassemble instruction that would have been missed or wrongly
disassembled by IDA.
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Thank’s to an internal DBA representation and a tiny SMTLIB2 representation it can
perform some computation on data and values in order to generate reports or charts. From
an analysis perspective, some obfuscation specific features are implemented to highlight
dead code, annotate code or compute various statistics. Global aim is to integrate DSE
analysis in the main tool which is used in reverse-engineering so as to facilitate data
exploitation in an user-friendly manner.

6.6 Components Interaction
The communication between the three entities is being made using a message queueing

protocol base on ZeroMQ4. This framework has been chosen as it provides great bindings
in the three languages involved C++, Python and OCaml. In this context, Binsec/se
works as a server handling analysis requests over the network. A request is formed by a
configuration file serialized in protobuf, followed by the execution trace splitted in chunks.
A chunk is a buffer of instructions, transmitted when filled. The size of a chunk can be
parametrized with the argument -chunk-size in Pinsec. This changes from the classical
workflow where arguments are sent on the command line and the trace read from a file.
When running as a server Binsec runs multiple worker to receives different requests
simultaneously. The architecture is modular, thus various configurations are possible:

• Pinsec ↔ Binsec for direct streaming, of the execution trace to Binsec (see
Section 6.7 for a concrete application),

• Idasec ↔ Binsec for static symbolic execution. Paths can easily be created using
IDA. (see Section 10.2 for an application),

• Pinsec↔ Idasec↔ Binsec for a complete interaction between the three entities.
This configuration allows a dynamic and simultaneous interaction with the program
instrumented and the lifting of resulting informations in IDA, all in the same time.

All messages transmitted over the three entities are of the form COMMAND, DATA where
COMMAND indicates the DATA kind or a control message. From the Binsec/se side, at the
time of writing three commands are supported:

1. DECODE_INSTR: to decode the semantic of an instruction into DBA,

2. REQUEST_INFOS: to have analysis available, solver available etc,

3. START_ANALYSIS: that takes a configuration as DATA and triggers the appropriate
analysis accordingly.

Pinsec, support few commands to interact with the instrumentation5. Supported
commands are:

4http://zeromq.org/
5It does not used the standard GDB remote debugging interface for now
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• RESUME resuming the instrumentation after a breakpoint hit. When a breakpoint is
triggered Pinsec send a BP_REACHED to the symbolic executor,

• PATCH_ZF allowing to patch ZF forcing a specific value. This is being used to force
a program to take certain branches.

API. Within an analysis in Binsec/se two additional callbacks are available to interact
with the different entities:

• send_message sending a command, to any of the other components. Note, that by
default when running a remote symbolic execution, all log messages are sent to the
remote entity,

• input_message_received triggered when a message is received from an external
component

6.7 In practice: A crackme example
A crackme is a challenge simulating a real world situation where binary programs are

designed to make the analysis difficult. The goal is usually to find a string key (the flag)
allowing to validate the challenge.

Flare-On is a reverse engineering challenge organized since 2014 by the FLARE team
of FireEye Security6. This section analyses the first challenge of 2015 since it is straight-
forward enough to be discussed in detail and will put in action all features described
hereabove. This crackme is a 32 bits Windows program which asks for a password and
prints “You are success” or “You are failure” depending on the keyboard input. Each
byte of the input (input_buffer) is xored with 0x7d, the result is then checked against a
key stored in the data section (data_str), cf. Figure 6.5.

Solving the crackme by symbolic execution aims at checking that the predicate ZF=1
is true at location 0x40105b; and this, for every character of the key. If the generated
formula is satisfiable, then the right character can simply be retrieved in the formula
solution at input_buffer[ecx]. One last remaining problem is the initial state. If none is
specified, the solver is allowed to give any valuation to the content of data_str, while it
is read-only data. Hence, an initial state constraining the value of the data_str bytes is
required in order to get meaningful results for input_buffer (cf. Section 6.3.3). Finally,
iterating over input_buffer can be done in two ways: a manual offline way, and a fully
automated way (more complex).

The simple (painful) way From a trace taking the fail branch, we should solve ZF=1
at 0x40105b to get the right char and inject it back as input via the configuration file (cf:
6.2.2) for generating a new trace that will go for a second loop iteration, repeating until
the whole key is found.

6 http://www.flare-on.com/
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...
401045 call ReadFile
40104b xor ecx, ecx

40104d mov al, input_buffer[ecx]
401053 xor al, 0x7d
401055 cmp al, data_str[ecx]
40105b jnz 0x40107b

40105d inc ecx
40105e cmp ecx, 0x18
401061 jl 0x40104d

ZF=1

ecx < 24

401063 ...
...
You are a success

ecx = 24

40107b ...
You are a failure

ZF=0

Figure 6.5: Flare-On #1 CFG decoding loop

The automated way Configures a breakpoint at 0x40105b (the address of jnz), com-
pute the right character value, send a command to patch the ZF flag when the command
BP_REACHED is received and resumes instrumentation to force the tracer to take the right
branch and to loop again. This fully automatic method makes usage of both the remote
control features and the incremental solving (cf. Section 6.4.2). This method allows to
solve all the character values in O(n) w.r.t trace length.
Finally, we obtain the right key solving the challenge, bunny_sl0pe@flare-on.com7.

7A complete demo is available at https://youtu.be/0xUc2jbpjQo
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Chapter 7

Path predicate optimizations

Optimizing the path predicate at the formula level is a crucial task as solving it is
the most costly part of DSE. Furthermore, prior knowledge of the analysis and program
allows to perform some relevant context-sensitive pre-processing optimizations. As an
example, some optimizations will greatly take advantage of the way memory accesses are
performed. First, pre-processing optimizations implemented are aiming at reducing the
complexity in space/time, but also provide normalized representation of formulas. This
normalized representation is used for optimizations to benefit from one another. Second
we propose array optimizations aiming at reducing constraints on the array representing
the memory. Benchmarks preformed shows in best cases, a tremedous speed-up in solving
time.

7.1 Pre-processing optimisations
This section describes four different pre-processing optimizations: (1) backward prun-

ing aiming at removing all unused terms in the formula, (2) constant propagation which
performs several syntactic simplification, (3) rebase, an original optimization normalizing
some expression and (4) high-level predicate aiming at lifting low-level x86 comparison
operations into natural conditions. Table 7.1 summarizes the optimizations and which
solver benefits from each of them.

Table 7.1: Summary pre-processing optimizations

pruning constant rebase high-level
propagation predicates

∼mathsat ∗ ∗ ∼Yices
∗: enables other optimizations

7.1.1 Backward-pruning
The main pre-processing operation performed by most DSE engines is the backward-

pruning phase. The objective is to remove all unused or irrelevant terms in the formula
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by doing a backward pass starting from the assert property to check. All variable terms
used in any assert of the formula are then kept. The listing 7.1 gives an example where
the value of esp3 is checked. Recursively, eax, esp1 and esp0 are then used.

esp1 := esp0
esp2 := esp1 - 4
esp3 := eax + esp1
( assert esp3 == # x00000004 )

Listing 7.1: Backward-pruning example

Experiments Regarding benefits measurement, we compare the number of terms in
formulas with and without pruning. Table 7.2 provides the formulas statistics with and
without the pruning phase. This benchmark has been performed on a 377300 instructions
path predicate. The gain in space is significant, it varies from a 129Mo formula file with
more than 1M terms to a 22Mo formula file with 239916 terms. The gain in solving time
is mitigated. For example, as shown in Figure 7.1 mathsat can solve a 72k not-pruned
trace, it can solve a 82k pruned trace with a 2min timeout. Solving times, appeared not
to be significantly better if not worse for some solvers (Z3, CVC4). Thus this optimisation
is more valuable for formula compactness and readability rather than any solving time
improvements.

Table 7.2: Backward-Pruning statistics

#inputs #variables #constraints #terms (total)
No pruning 619 1,173,269 218,436 1,392,324

With pruning 61 155,593 84,262 239,916
Gain x10 x7.5 x2.5 x5.8

As of now, unless explicitely mentioned all the other optimizations and benchmarks
use this generic post-processing pass on the formula.

7.1.2 Constant propagation & Local Rewriting

Constant propagation is also a common optimization in DSE engine solvers or compil-
ers. While it is usually performed by the solver, it is interesting to make it during the path
predicate computation as it simplifies data structures hold internally and also unleash the
power of others optimizations that require a canonical representation of terms. Figure 7.2
shows a trivial example of constant folding on the expression esp2. Propagation is being
performed by classic rewriting rules which the more important are given in Figure 7.3.
We define by ⇓ the concrete evaluation operator, that simulate an expression according
to its semantic or fail otherwise. Thus, this operator works only on constant variables.
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Figure 7.1: Solving time mathsat with/without pruning

Before constant folding
→

After constant folding
esp1 := 0xfffffff0 esp1 := 0xfffffff0
esp2 := esp1 + 0x00000004 esp2 := 0xffffffec

Figure 7.2: Constant propagation example
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e1, e2 ∈ Bv e1 ♦b e2 ⇓ e′

e1 ♦b e2  e′
e1 ∈ Bv ♦ue1 ⇓ e′

♦ue1  e′

e′ ,


e1 if c = true
e2 if c = false
if c ? e1 : e2 otherwise

if c?e1 : e2  e′
e1 = e2

e1 ‖ e2  e1

e1 = e2 sz , size(e1)
e1 ⊕ e2  0{sz}

e1 = true ∨ e2 = true

e1 ‖ e2  true

e1 ⇓ false e2 ⇓ false
e1 ‖ e2  false

e1 ⇓ false ∨ e2 ⇓ false
e1 && e2  false

e1 ⇓ true e2 ⇓ true
e1 && e2  true

e1 = e2 sz , size(e1)
e1 − e2  0{sz}

e2 ⇓ 0 sz , size(e1)
e1 × e2  0{sz}

e2 ⇓ 0
e1 + e2  e1

e2 ⇓ 1
e1 × e2  e1

e1 ∈ V ar e2 ∈ Bv e′1 , Σ∗(e1) e′1 ∈ Bv e′1 6= e2

Σ∗, e1 = e2  false

⇓ the concrete evaluation operator

Figure 7.3: Some propagation rules & rewriting
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7.1.3 Rebase
The rebase optimization is a new auxiliary optimization aiming at reducing the num-

ber of variable definitions in the path predicate so as to improve the efficiency of both
the backward-pruning pass, and the read-over-write optimization described in Section 7.2
by providing a common basis of logical comparison. This optimization works by replac-
ing a new variable definition with an older definition by commiting all the arithmetic
changes performed on it. It works for basic arithmetic operators {+,−}. Example in
figure 7.4 shows the two advantages of applying such transformation combined with the
backward-pruning pass. In the example esp3 can be rebased on esp1 which makes the
esp2 definition useless. Then the backward-pruning pass remove the term from the for-
mula.

path predicate
→

After rebase (+pruning)
esp1 := eax esp1 := eax
esp2 := esp1 - 0x04 esp2 := esp1 - 0x04
esp3 := esp2 - 0x04 esp3 := esp1 - 0x08

Figure 7.4: Constant propagation example

Figure 7.5 defines the two propagation rules used by the rebase optimization.

e ∈ V ar ∧ Σ∗(e) ∈ V ar e′ , Σ∗(e)
Σ∗, e  e′

e0 ♦
′
b e
′
0 , Σ∗(e1) e1 = e0 ∈ V ar e′0, e2 ∈ Bv (♦′b e′0) + (♦b e2) ⇓ Cnew

Σ∗, e1 ♦b e2  e0 + Cnew

Figure 7.5: Rebase propagation rules

Impact In addition to reducing the number of terms in the formula, this optimization
also lays some basis for making logical comparisons more easier. For instance, in the
example it is clear that esp2 and esp3 are not aliased (strictly disjoint) because they are
both based on esp1 but with different offsets. This property will be of a great help for
the next section.

7.1.4 High level predicate encoding
The semantic of assembly instructions tends to be modeled with low level operations

using for instance bit-masks, xor or extract. This is especially the case for conditions.
At the source level the condition if(x = 0), while certainly be assembled with both a
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cmp and a jz instruction that will communicate with flags update. Table 7.3 shows an
example of binary semantic for the simple ecx < 24 predicate.

Table 7.3: ecx < 24 binary semantic

Mnemonic DBA semantic
cmp ecx, 24 res32 := ecx− 24

OF := (ecx{31} 6= 24{31})&&(ecx{31} 6= res32{31})
SF := res32 <s 0
[...]

jl 0xffffffec if(SF 6= OF ) goto 0xffffffec else [...]︸ ︷︷ ︸
((ecx− 24) <s 0) 6= (ecx{31} 6= 24{31})&&(ecx{31} 6= res32{31})

Based on some recent researches [DB16b], the idea is to lift low-level operators to higher-
level operators that once symbolically executed will be hopefully simpler to solve. Indeed,
it depends on the inner working of the solver, some might be more efficient on low-level
encoding while some others might be better on higher-level operators. Based on Table
7.4 we perform a syntactic processing on instructions to transform low-level predicates to
their natural condition equivalent. Then the symbolic execution is performed as usual.
This optimization is highly pervasive as it will modify all the path constraints in the
formula. The transformation is sound as it only replaces a cmp, sub, test immediatly
followed by conditional instruction based on pattern matching rules. Doing a generic
transformation would require more in-depth and expensive formal analysis [DBG16]. Also,
this optimizations is pattern-matching based so it works solely on x86 and would require
different rules to be adapted to other architecures.

Experiments Using the same execution trace (377000 instrs), the benchmark highlight
the computation time with and without the high-level predicate optimization. Experi-
ments carried put in evidence a small gain for certain solvers. Figure 7.6 shows the results
for Yices. While it fluctuates the high-level predicate encoding is on average more effi-
cient than without optimization (58% of the time). As a conclusion, the gain is rather
small but such pre-processing worth being activated if the solver used takes advantage of
higher-level predicates encoding.

7.2 Array optimizations (load/store)
The theory of arrays is used in DSE to represent the memory. Therefore, it is important

to handle it carefuly and to optimize operations performed on it, they are used to be
highly constrainted. We consider three types: arrays A, index I and elements E in any
theory (in our case bitvectors). As a recall, the array theory [McC62] TA provides two
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Table 7.4: High-level predicates mapping [BR10]

Comparison Conditional High-level predicateinstruction instruction

cmp x, y

ja, jnbe a >u b
jne, jnb, jnc a ≥u b
jb, jnae, jc a <u b
jbe, jna a ≤u b
je, jz a = b
jne, jnz a 6= b
jg, jnle a >s b
jge, jnl a ≥s b
jl, jnge a <s b
jle, jng a ≤s b

sub x, y

ja, jnbe, jb, jnae, jc x′ 6= 0
jae, jnb, jnc, jbe, jna,

truejge, jnl, jle, jng
je, jz x′ = 0
jg, jnle x′ >s 0
jl, jnge x′ <s 0

test x, y

ja, jnbe, jne, jnz (a&&b) 6= 0
jae, jnb, jnc true
jb, jnae, jc false
jbe, jna, je, jz (a&&b) = 0
jg, jnle ((a&&b) 6= 0) ∧ ((a&&b) ≥s 0)
jge, jnl (a ≥s 0) ∨ (y ≥s 0)
jl, jnge (a <s 0) ∧ (y <s 0)
jle, jng ((a&&b) = 0) ∧ ((a <s 0) ∧ (y <s 0))

Figure 7.6: Yices solving time w.r.t trace length
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operations ΣA = {select, store}. also named load and store or read, write. From now
we indifferently use them equally. The signature of these two operations are defined by:

• read : A× I → E

• store : A× I × E → A

So, while read(A, x) returns the logical value at index x in the array A, write(A, x, v)
returns a new array updated with the value v stored at x. The first property of array
is the functionality (cf. FC) which states that given an array a, if two indexes i, j are
equals the read operation on whichever index are equals. Given the signature of the
store, a memory is either an empty memory or the outcome of a sequence of store. The
read-over-write (RoW) is instinctively knowing whether a read index has previously been
written or not. For a given memory, this can be done by iterating all its store operations.
The Read-over-Write axiom consider two cases:

FC : if i = j, read(a, i) = read(a, j) (7.1)
RW1 : if i = j, read(write(a, i, v), j) = v (7.2)
RW2 : if i 6= j, read(write(a, i, v), j) = read(a, j) (7.3)

Intuitively, the two cases can be described as:

• RW1 we can replace a read operation by the value written on the previous write
if it is performed on the same logical indexes,

• RW2 if both indexes are different, we can replace the read in the result of the store
by a read in a (directly).

Backwarding simplification These two properties can be applied in order to perform
simplification on arrays. The idea is to perform such simplification on every load of the
execution to either substitute it by the written value (Figure 7.7) or to “rebase” it to an
older memory (Figure 7.8). The later case works similarly to the rebase optimization.
For a given load the simplification algorithm needs to work recursively as long as it can
compare the load and store indices.

Before Read-over-Write
→

After Read-over-Write
memory1 := write(memory0, 0xffc351fc, 0x04) memory1 := write(memory0, 0xffc351fcn 0x04)
eax := read(memory1, 0xffc351fc) eax := 0x04

Figure 7.7: RoW case #1
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Before Read-over-Write

→

After Read-over-Write
memory1 := write(memory0, 0xffc351fc, 0x04) memory1 := write(memory0, 0xffc351fc, 0x04)
memory2 := write(memory1, 0x80105200, 0xfc) memory2 := write(memory1, 0x80105200, 0xfc)
eax := read(memory2, 0x7f000080) eax := read(memory0, 0x7f000080)

Figure 7.8: RoW case #2

M₀ M₁ M₂ M₃ M₄ M₅ M₆

@[esp +3]→1 @[esp +4]→0 @[100]→12 @[50]→0 @[40]→5 @[ebp+10]→1

M₅[100]➭12
M₅[47]➭M₂[47]

Figure 7.9: Example STC-RoW

7.2.1 Standard Read-over-Write pre-processing
To simplify a load operation a backtracking step on the whole store chain must be

performed. The “standard” Read-over-Write is a linear approach where the RoW com-
plexity for a single load is linear O(n) with n the number of store operations in the
path predicate. Depending on the number of load the worst case complexity of the whole
simplification process is roughly quadratic. Hence the backtracking phase along the store-
chain is usually bounded by a constant k to ensure only a linear overhead. Figure 7.9
shows an example of such chain of store. The first load M5[100] can be fully substituted
with a RoW backtracking 2 times. The second load M5[47] can be rebased on M2 by
backtracking 3 times. It cannot be backtracked further as 47 and esp + 4 cannot be
logically compared.

Formally, we denote St(m, i, x) a store operation in the memory m at index i and the
store-chain −→St ,< St0, St1 . . . Stn >. Then we consider 3− cmp a three-way comparison
function allowing to compare expressions. This function should return true and respec-
tively false if both expressions are comparable and respectively equal or not. If two
expressions are not comparable the function should return ?. More formally we have:

3-cmp(x, y)


true if comparable(x, y) ∧ x = y
false if comparable(x, y) ∧ x 6= y
? if ¬comparable(x, y)

Implementation 3-cmp comparable returns true only if both expression use the same
logic variables (in this case the bitvector theory TBv). As an example 3 − cmp(esp1 −
4, esp1−4) = true, 3−cmp(esp1−4, esp1−8) = false and 3−cmp(esp1, eax0) =? as esp1
and eax0 cannot be syntactically compared. We consider by convenience that memories
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(aka array) are named strictely incrementally, thus Mx+1 is the memory created after a
store in Mx.

Backtracking algorithm We can now formalize the RoW backtracking algorithm as
a recursive function iterating the store-chain bounded by k. We denote by STC-RoW the
unbounded algorithm and kSTC-RoW the algorithm bounded by k. The overall kSTC-
RoW complexity is O(#load × k) thus bounded by O(n2) and the algorithm is defined
by:

kSTC-RoW(load(Mn, eld), k) ,


v if C = true ∧ k 6= 0
kSTC-RoW(load(Mn−1, eld), k − 1) if C = false ∧ k 6= 0
load(Mn, eld) if C =? ∨ k = 0

with: Mn−1, est, v , Sts.(n− 1) and C , 3-cmp(eld, est)

7.2.2 Read-over-Write “Concrete map”
In the case of constant indexes (eg. policy CC) we can in principle remove all load.

Yet, kSTC-RoW cannot achieve it. A common solution is using a map of all indices
written, then we can perform in O(ln(n)) the backtracking step of RoW. This provides the
best complexity possible for the RoW simplification. We denote CM-RoW this algorithm.
Under these settings, all load can either be replaced by the value previously written either
being rebased on the initial memory. As a consequence, the chain of stores is not used
and can be pruned. Unfortunately, having constant values for indices is a really specific
situation and in DSE, indices are more often arbitrary logical expression on bitevctors.

7.2.3 Read-over-Write “Store-Map Chain”
The main issues of the previous approaches are:
• STC-RoW does not scale on huge path length we have to deal with,

• kSTC-RoW is not optimal,

• CM-RoW only applies under very specific settings.
We propose a more scalable and optimal algorithm which complexity is oscillating between
O(ln(n)) and O(n2) depending on the settings and environment. We can use a different
internal data-structure to improve the complexity of the RoW. The idea behind this
encoding is that multiple stores having the same base will update the same map thus
reducing the cost of lookup when performing the RoW on a load. If a new store is
performed but with a different base, a new map (with its base) is appended to the chain.
Figure 7.10 shows the same store chain as the standard approach (see Fig.7.9) but using
our data-structure. For one load, the STC-RoW complexity is O(n) while it is y× log(x)
for the STMC-RoW where y is the number of store-groups and x the size of the maps.
In the worst case scenario we have y = n and thus x = 1 bringing us back to the same
complexity as STC-RoW.
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M₀ M₂ M₅ M₆

3→1

4→0

100→12

50→0

40→5

10→1

M₅[100]➭12
M₅[47]➭M₂[47]

@[ebp+]@[esp +] cst

y

x

Figure 7.10: Architecture STMC-RoW

Formalization Similarly to the standard RoW we defines by Sts] ,< St]1, St
]
2 . . . St

]
n >,

the new store chain where St]n is an element of the chain. Thus, we defines St]n ,
(Mn, bn,mapn) the tuple where Mn ∈ TA is the memory, bn ∈ Base a base expression and
mapn ∈ (N × Expr). We denote Base , {Expr ∪ Csts}) formed of either an expression
either a constant value. Based on these definitions we define b_of_expr : Expr → (Base×
N an auxiliary function that returns the base and offset of any expression. For instance
b_of_expr(esp + 4) = esp, 4 or b_of_expr(43) = (Csts, 43). The update function and
the STMC-RoW algorithms are formalized below:

update− store(Mn+1, est, v) ,
{
mapn[offst] := v if ¬(3-cmp(bn, bst) �?)
Sts] :: (Mn+1, bst, (offst 7→ v)) if 3-cmp(bn, bst) �?

with: bn,mapn , Sts].(n) and bst, offst , b_of_expr(est)

STMC−RoW (load(Mn, eld) ,


mapN .(offld) if 3-cmp(bld, bn) � true ∧ offld ∈ dom(mapn)
load(Mn−1, eld) if 3-cmp(bld, bn) � false
load(Mn, eld) otherwise

with : bld, offld = b_of_expr(eld) and Mn, bn,mapn = Sts].(n)
Such a construction enhances significantly the complexity of the RoW algorithm. Table

7.5 summarizes the complexity gain between the different alternatives. The best construct
is to keep a concrete mapping from constant addresses to theirs value but it only works
if all read/write are performed to constant addresses. So, while with constant indices
STMC-RoW have the best complexity (the same as a direct mapping CM), it also gain
on more symbolic modes knowing that in the worst case it provides the same complexity as
kSTC-RoW. As a consequence this algorithm adapts and scales to depending on the sort
of loads and store performed and provides the optimal complexity in all cases. We denote
respectively perfect techniques that perform the optimal substitution and we denote them
partial instead.

This algorithm works especially well on C/S policies that keep concrete memory ad-
dresses (cf. Table 7.5) in that it will always be possible to backtrack to the first memory
thus opening the way to syntactical optimizations as the memory flattening presented
hereafter.
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Table 7.5: Complexity comparison of RoW simplifications

index concrete map store-chain k-store-chain store-map chain
CM-RoW STC-RoW kSTC-RoW STMC-RoW

constant n · ln(m) n.m n · k n · ln(m)
values (perfect) (perfect) (partial) (perfect)

+WoW +WoW
symbolic (cannot handle) n.m n · k n · y · ln(x)

(perfect) (partial) (partial) +WoW
. k backward bound, . x maximum number of value within a map, . n number of load,
. m number of store, . y number of map, . (partial) do not simply all possible load,

. perfect simplify all possible load, . WoW Write-Over-Write gained wihtout additional
computation (writing over another write on the same index)

Write-over-Write The WoW is the property indicating that two consecutive store, at
the same logical index are equivalent to the second store in the array of the first. Formally:

store(store(An, i, v1), j, v2) ∧ i = j =⇒ store(An, j, v2)

Performing a WoW simplification implies to backtrack on every store in memory which
is very costly. Moreover, such simplifications should also handle potential load operation
performed on the memory of a store before simplifying it. As such, STMC-RoW with its
map-based chain provides the Write-over-Write (WoW) for free. Indeed, two store using
the same base, and writing at the same address will update the same value in the map
(overwriting the previous one).

7.2.4 Benchmarks
The following two benchmarks emphasize the difference and the effect of the kSTC-

RoW and STMC-RoW techniques on a generated formula w.r.t compactness and efficiency
of the optimization. For that a 370000 instructions long trace was used. For the kSTC a
bound of k = 150 was arbitrarily used. The first benchmarks shows formula simplification
statistics by in applying kSTC-RoW or STMC-RoW. The second benchmark, provides
some insight on the internal statistics of optimizations themselves like the chain lengths,
map sizes etc.

Benchmark #1 This benchmark provides formula statistics namely number of inputs,
variables, load and store in memory and the number of constraints. These attributes
are compared without RoW and with kSTC-RoW or STMC-RoW under different levels
of concretization on the memory. The idea is to assess the potency of optimizations
on formulas addressing the memory accesses differently. For that, we re-use policies
throughoutly discussed in Chapter 4, namely CC, PC, PP* and PP. For clarity in the
results the policy CP is not shown as results are very close from PP* and PP. Results are
given in Table 7.6.
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Table 7.6: Simplification statistics kSTC Vs STMC RoW

CC PC PP* PP
∅ kSTC STMC ∅ kSTC STMC ∅ kSTC STMC ∅ kSTC STMC

inputs 119 96 61 119 114 114 119 85 85 119 116 116
variables 482357 335926 155593 482357 353234 353234 482357 354922 353074 482357 340340 331898
load 107574 52353 3381 107574 109755 109744 107574 100087 99203 107574 104942 100956
store 58005 57855 0 58005 57997 57997 58005 57992 57992 58005 58005 58005
constraints 218778 196691 84262 115357 110269 110269 150928 108131 108126 57361 52280 51217

Results for CC are outstanding. While kSTC-RoW removes half of loads, STMC-
RoW substitute all of them. The 3381 remaining are loads on the initial memory and
thus allow to prune the whole store chain. This shows that kSTC-RoW is not optimal
and could have replaced 48972 more loads. On more symbolic modes and especially SS
kSTC-RoW managed to replace 2632 loads by their value while STMC-RoW managed to
replace 6618 of them, thus more than twice more. It worths noting that these statistics
does shows load which where rebased to preceding memories. These data are shown in
the next benchmark. Timing benchmarks are given in Table 7.8 and also validates the
gain of STMC over the STC approach.

Benchmark #2 The goal of this benchmark is to highlight the inner efficiency of
kSTC and STMC optimizations. It shows the number of load fully replaced (ROW 1),
the number of load rebased (ROW 2) on a prior memory and the number of load where
nothing could have been performed (∅). It also shows for kSTC the min, max, moy of
the backtracking k (so bounded by 150). For STMC-RoW it takes another meaning, it
represents min, max, mean the size of the different maps in the store chain. Finally it
also shows for STMC-RoW the y value representing the size of the custom store chain.
The benchmark re-use the same settings as the first benchmark and results are given in
Table 7.7.

Table 7.7: Internal optimization statistics kSTC Vs STMC RoW

CC PC PP* PP
kSTC STMC kSTC STMC kSTC STMC kSTC STMC

replace 73209 129644 4 28 10139 10936 4960 8959
rebase 63185 2 25 0 111 1091 0 1105
∅ 17 4243 138672 138673 128099 140637 133629 141174

kSTC: k min 0 36 0 36 0 1 0 1
STMC: x max 150 15506 115 15506 149 757 7 264

avg 5 7506 0 7488 0 15 0 12
STMC:y / 1 / 1 / 20581 / 24770

Results are insightful to understand the potency of algorithms. In STMC-RoW in CC
load but two are replaced by theirs value. The two remaining have been rebase on the
initial memory while the others were already load on initial memory. On average kSTC
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backtrack on five store to perform the replacement which means many of RoW are rather
local. As expected in CC the store-chain length is 1 so all the RoW simplification where
performed in ln(x). For more symbolic modes, optimizations are still working despite the
reasoning difficulty. For instance, in PP, STMC manages to replace 8959 load and to
rebase 1105 of them but more surprinsingly the maximum size of the map is 264 with an
average of 12. This results shows that storing multiple store with the same base is working
and efficient in practice even one more symbolic modes. This benchmark highlight another
takeway on PP. In STMC, the store-chain is reduced to 24770 while the whole store chain
is still 58005 and kSTC have to backtrack on such size.

Conclusion Results are clear, while kSTC slightly reduce the number of load and the
number of variables compared to no optimization, STMC significantly peforms better
and especially on CC (as expected). Indeed, for STMC in CC the store chain is only one
map containing all the element. Notably, PC is particulary weak as only 28 load were
replaced. This indicates that keeping either load or store symbolic tends to weaken the
optimization. Further, solving time benchmarks are performed in the next section. As
a conclusion, STMC performance in CC are optimal as expected. Yet, in more symbolic
modes the STMC-RoW is still potent as it managed to replace 8959 load and to rebase
1105 of them which is twice better than a standard RoW. It is worth noting that in this
mode the average map was 12 with a maximum value of 264. These results validates the
potency of the optimization at any level of “symbolicness”.

7.2.5 Memory flattening
This syntactical optimization is complementary with the RoW and aims at removing

the memory array when all the load and store are performed at concrete indexes. This is
made possible by the RoW that will either replace a load by its value either rebase it in the
initial memory denotedM0. Then, all load replaced by a fresh bitvector representing the
memory cell. Removing all the load operations turn a Qantifier-Free Array and Bitvectors
(QF_ABV) formula into Qantifier-Free Bitvectors (QF_BV). In this way, the formula can
be solved by solvers not supporting the array theory TA. Jointly, it helps solvers like Z3
which are more efficient on bitvector-only formulas. For this optimization, we consider
M0 the initial memory, and map ∈ (Bv → ϕ) the map from constant addresses to theirs
symbolic value. The optimization algorithm is formalized as:

mem_flat(map,Mi, e) ,


map,map(e) if e ∈ dom(map) ∧Mi = M0 ∧ e ∈ Bv
map[e← fresh], fresh if e /∈ dom(map) ∧Mi = M0 ∧ e ∈ Bv
map, load(Mi, e) otherwise

The first output is the map (update or not), that will be held during the whole symbolic
execution. The second output is the expression simplified (or not). Let us detail the three
cases: (1) the index is already in the map so we substitute the expression by the content of
the map, (2) the index is not in the map so return a fresh symbol and update accordingly
and (3) the memory where the load is performed is not the initial memory so nothing is
performed.
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Experiments To evaluate the gain we solve the previously used path predicate of
377300 instructions containing 3381 read in memory. We performed the experiments
in CC-CRH so that the optimization will remove all the memory array. Figure 7.11 shows
the solving time results for Z3 that really benefits from the flattening. While the solving
time did not appeared to change significantly on other solvers, it was never worse. Thus,
it is worth activating this optimization that will opportunistically remove the array theory
on concrete modes like CC-CRH.

Figure 7.11: Z3 solving time w.r.t trace length

7.3 Experiments: Optimization combination

All experiments are complementary one another. This section evaluates the gain of
the different RoW modes on the criteria of formula size and solving time. All that is
made in different environment of execution namely different concretization and symbol-
ization settings. Benchmarks are performed on a 377300 instructions long trace. Three
benchmarks will be performed. Bck#1 evaluates the computation time impact of the
optimisations on the path predicate. Bck#2 evaluates the impact of optimizations w.r.t
C/S policies and the impact on the path predicate. Bck#3 evaluates the different solvers
w.r.t optimizations given a fixed C/S policy).We notate “C” the constant propagation,
“R” the rebase, “W” the kSTC-RoW and “H” the STMC-RoW. Thus, the code CRH,
indicates the combination of constant propagation, rebase and STMC performed in this
order. As expected, basic pre-processing depends on the efficiency of the solver, while
array optimizations demonstrate a huge speed-up for all solvers.
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7.3.1 Benchmark #1: Impact on path predicate computation
Table 7.8 shows the benchmark results for five different C/S policies (see. Chapter 4)

and five different levels of optimizations. Results show that not performing optimization
increases the instruction throughput which tends to discourage using these optimizations.
However, they drastically decreases the solving time as shown inBck#3. As a conclusion,
we might be interested in finding the right balance in selecting the optimizations although
it will everytime be in favor of using all optimizations.

Table 7.8: Path predicate computation time and instruction/seconds

CC CP PC PP* PP avg
∅ 22.09s 22.04s 17.69s 18.56s 16.90s 19.46s

17081 i/s 17119 i/s 21329 i/s 20329 i/s 22325 i/s 19392 i/s
C 27.81s 27.38s 23.89s 24.72s 22.64s 25.29s

13567 i/s 13780 i/s 15794 i/s 15263 i/s 16665 i/s 14920 i/s
CR 29.41s 28.60s 25.14s 25.78s 24.28s 26.64s

12829 i/s 13193 i/s 15008 i/s 14636 i/s 15540 i/s 14162 i/s
CRW 79.32s 30.67s 26.46s 26.61s 25.91s 37.79s

4756 i/s 12302 i/s 14260 i/s 14179 i/s 14562 i/s 9983 i/s
CRH 40.84s 30.17s 37.34s 26.97s 26.29s 32.32s

9238 i/s 12506 i/s 10105 i/s 13990 i/s 14352 i/s 11673 i/s
avg 39.89s 27.77s 26.10s 24.53s 23.20s

9458 i/s 13586 i/s 14454 i/s 15383 i/s 16261 i/s
performed on a 377000 instructions path predicate

7.3.2 Benchmark #2: Optimizations
This benchmark assesses the potency of optimizations on different C/S policies in

terms of formula size and statistics. Table 7.9 shows the statistics for each level of opti-
mizations.

Unsurprisingly, the CRH optim in CC manages to remove all the store operations
and drastically reduce the load operations to the ones reading in the initial memory.
The gain for loads is x31. The STMC is by design less potent on more symbolic policies.
However optimisations provide good constraints reduction, for instance in PP* constraints
are reduced from 150928 to 108126 between no optimisations and CRH, thus providing a
gain of 28%. As conclusion, from the statistical point of view, the combination CC-CRH
removes all stores, and almost all load but more symbolic modes also provides significant
improvments on the solving time as shown in Bck#3.

7.3.3 Benchmark #3: Solving time
With a fixed, policy CC this benchmark evaluates the solving time of a path predicate

under different level of optimisations. As performed in previous Chapter 4 we evaluate
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Table 7.9: Optimizations formula statistics

#inputs #variables #load #store #constraints

CC

∅ 119 482,357 107,574 58,005 218,778
C 116 448,919 107,478 58,005 213,602
CR 116 350,173 106,596 58,005 207,204
CRH 61 155,593 3,381 0 84,262

CP

∅ 117 482,357 107,574 58,005 160,782
C 114 448,904 107,478 58,005 155,607
CR 114 339,972 106,596 58,005 149,209
CRH 114 334,344 106,585 58,005 149,204

PC

∅ 119 482,357 107,574 58,005 115,357
C 116 444,082 107,478 58,005 110,277
CR 116 353,257 109,759 58,005 110,277
CRH 114 353,234 109,744 57,997 110,269

PP*

∅ 119 482,357 107,574 58,005 150,928
C 86 438,605 107,465 58,005 112,124
CR 86 357,549 109,651 58,005 111,092
CRH 85 353,074 99,203 57,992 108,126

PP

∅ 119 482,357 107,574 58,005 57,361
C 116 444,070 107,478 58,005 52,282
CR 116 340,396 109,759 58,005 52,282
CRH 116 331,898 100,956 58,005 51,217
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the solving time of different path predicate lengths. We evaluate 5 solvers under these
settings with a 2 minutes timeout (TO=120s).

Figure 7.12 shows the solving time results obtained and the gain provided in terms of
performences. Results shows, that without optimisations none of the solvers succeed in
solving the whole execution trace. In CRH Yices manages to solve the whole predicate.
The difference between no optimisation, just constant propagation and rebase is rather
low as they are more pre-processing tasks aiming at improving the RoW. Results put
in evidence the gap between CRW and CRH. CVC4, mathsat and Yices are the best
examples.

While the performances of solvers are very disparate, optimizations provide better
results than no optimizations and most notably with the CRH. Results show that CRW
misses lots of cases and is as consequence not optimal.
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boolector � ∅ �C �CR �CRW �CRH
500 0.05 0.05 0.06 0.09 0.02
1000 0.08 0.12 0.15 0.12 0.02
10,000 6.07 9.73 8.03 6.28 0.05
100,000 X X X X X
377309 X X X X X
max 68450 51000 64842 51120 50970

(a) boolector solving: Time & Graph

CVC4 � ∅ �C �CR �CRW �CRH
500 0.13 0.16 0.14 0.08 0.03
1000 0.34 0.37 0.29 0.11 0.04
10,000 112.08 111.24 92.68 66.96 0.44
100,000 X X X X X
377309 X X X X X
max 10057 10101 11640 13936 53540

(b) CVC4 solving: Time & Graph

mathsat � ∅ �C �CR �CRW �CRH
500 X 115.91 X 0.72 0.03
1000 X X X 0.66 0.03
10,000 X X X X 0.32
100,000 X X X X X
377309 X X X X X
max 476 517 464 1236 81960

(c) mathsat solving: Time & Graph

Yices � ∅ �C �CR �CRW �CRH
500 0.02 0.02 0.02 0.02 0.02
1000 0.05 0.05 0.04 0.04 0.02
10,000 0.8 0.75 0.63 0.52 0.06
100,000 34.75 48.62 33.42 34.77 10.7
377309 X X X X 54.37
max 155000 159000 159000 161000 377309

(d) Yices solving: Time & Graph

Z3 � ∅ �C �CR �CRW �CRH
500 0.37 0.39 0.47 0.05 0.02
1000 0.86 0.89 1.13 0.05 0.02
10,000 75.50 74.94 64.75 86.92 0.07
100,000 X X X X X
377309 X X X X X
max 22320 21120 20760 15196 62540

(e) Z3 solving: Time & Graph

Figure 7.12: Optimizations benchmark by solvers 97
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Chapter 8

Deobfuscation

This chapter presents two case-study obfuscations that were used as applications of
our algorithms in order to detect and thwart them. We considered opaque predicates and
call/stack tampering that can be encoded as infeasibility queries. Moreover, these two
obfuscations are rather resilient to static approaches which justifies focusing on them as
they are commonly encountered. Other obfuscations, like self-modification, are indirectly
handled by the dynamic aspect of our DSE approach. On opaque predicates, experiments
will be performed on the whole coreutils obfuscated using O-LLVM. For call/stack tam-
pering, experiments are performed on samples programs obfuscated with Tigress along
with some packers. This Chapter lays the basic taxonomy and detection methodology
used in Chapter 10 for real-world case-studies.

8.1 Opaque predicates detection

8.1.1 Definitions
An opaque predicate is a predicate always evaluating to true (resp. false) for which

this property is ideally difficult to deduce. The infeasible branch will typically lead the
reverser (or disassembler) to large and complex portions of useless junk code. The next
section shows various concrete examples of such predicates. The first definition was given
by Collberg[CTL98]:

Definition 2. A variable V is opaque at point p in a program, if V has a property q
at p which is known at obfuscation time written V q

p . A predicate P is opaque at p if its
outcome is known at obfuscation time. We write P F

p /P
T
p if P always evaluates to False

respectively True at p, and P ?
p if P may sometimes evaluate to True and sometimes to

False.

8.1.2 Taxonomy & Example
From now we denotes opaque predicates by Opaque Predicates (OP) for concision.

Collberg first proposed a taxonomy and classification of opaque predicates [CTL97] using
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either arithmetic or data structure invariant properties to build opaque predicates. The
different kinds of opaque predicates:

Arithmetic invariant aims at encoding invariants into arithmetic properties on num-
bers. An efficient method is to use modulo arithmetic. Further distinction between
arithmetic opaque predicates is given below. As an example Figure 8.1 shows the
x86 encoding of the 7y2 − 1 6= x2 predicate (as generated by O-LLVM [Jun+15]).
This condition is always false for any values of ds:x, ds:y, so the conditional jump
jz <addr_trap> is never going to be taken. Table shows many other OP used in
various tools such as Sandmark [Col03].
mov eax , ds:x
mov ecx , ds:y
imul ecx , ecx
imul ecx , 7
sub ecx , 1
imul eax , eax
cmp ecx , eax
jz <addr_trap > // false jump to junk
.... ........ // real code

Listing 8.1: opaque predicate: 7y2 − 1 6= x2

Data-structure invariant such category aims at hiding invariant into data-structure,
crafted on purpose which have specific opaque properties. Collberg proposed the
example of an array given in listing 8.2 which hold the following properties: (1) all
cells at indexes modulo 3 starting from 0 are 1 mod 5, (2) from index 1 all cells at
indexes modulo 3 are 2 mod 7, (2) cells at indexes 2,5,8,11 are respectively 1,5, 2
and 7. Then g[3] % g[5] == g[2] is always true because g[3] holds the property
1 mod 5 and g[5],g[2] are statically 5 and 1.
void main () {

// index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19

int g[] = {36, 58, 1, 46, 23, 5, 16, 65, 2, 41, 2, 7, 1, 37, 0,
11, 16, 2, 21, 16};

g[14] = rand (); // manipulable because unconstrainted (no
invariant )

if(g[3] % g[5] == g[2]) {
// Always get into

}
}

Listing 8.2: Array invariant data-structure

Pointer based invariant Aliasing is known to be a hard problem. Thus, encoding
invariant pointer aliasing on specific data-structure is difficult for any automated
algorithm. Collberg suggested an example based on circular list. Let’s consider
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Table 8.1: Arithmetic opaque predicates list (non-exhaustive)

∀x, y ∈ I 7y2 − 1 6= x2

∀x ∈ I 2|(x+ x2)
∀x ∈ I 2|x(x+ 1)
∀x ∈ I 3|(x3 − x)
∀x ∈ I x2 ≥ 0
∀n ∈ I+, x, y ∈ I (x− y)|(xn − yn)
∀n ∈ I+, x, y ∈ I 2|n ∨ (x+ y)|(xn + yn)
∀n ∈ I+, x, y ∈ I 2 6 |n ∨ (x+ y)|(xn − yn)
∀x ∈ I+ 9|(10x + 3 · 4x+2 + 5)
∀x ∈ I 3|(7x− 5)⇒ 9|(28x2 − 13x− 5)
∀x ∈ I 5|(2x− 1)⇒ 25|(14x2 − 19x− 19)
∀x, y, z ∈ I (2 6 |x ∧ 2 6 |y)⇒ x2 + y2 6= z2

∀x ∈ I+ 14|(3 · 74x+2 + 5 · 42x−1 − 5)
∀x ∈ I 2|x ∨ 8|(x2 − 1)
∀x ∈ I+ 64|(72x + 16x− 1)
∀x ∈ I+ 24|(2 · 7x + 3 · 4x − 5)
∀x ∈ I ∑2x+1

i=1,2|6i i = x2

∀x ∈ I+ 8|(72x+1 + 17x)
∀x ∈ I+ 2|bx2

2 c
∀x ∈ I+ 3|x(x+ 1)(x+ 2)
∀x ∈ I+ 7 6 |x2 + 1
∀x ∈ I+ 81 6 |x2 + x+ 7
∀x ∈ I+ 19 6 |4x2 + 4
∀x ∈ I+ 4|x2(x+ 1)(x+ 1)
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the example given in listing 8.3, create_circular_list creates a list of a random
size and returns a pointer to it. Then move shifts the current pointer of a given
number of items and insert add a new item in the list and returns a pointer to
it. As a consequence g cannot alias with h. By moving both pointers in the data
structure with the same value we ensure they cannot alias. This property si then
used to create opaque predicates. This is an example but any other data-structure
embedding such invariant are good candidates to create such predicates.
void main () {

item * g = create_circular_list (rand ());
g = move(g, rand ());
item * h = insert (g);
int x = rand ();
g = move(g, x);
h = move(h, x);

if (h == g) {
// never taken

}
}

Listing 8.3: Pointer aliasing invariant data-structure

Concurrence based invariant The idea is to encode invariant in race condition prop-
erties. Both static and dynamic analyses are known to be difficult and unreliable
for proving properties on such concurrent codes. Thus, using such kind of OP is
particularly efficient although difficult to craft reliably. Collberg proposed an exam-
ple where two threads update global variables intentionally delayed the threads to
encore opaque predicates. Listing 8.4 shows in example where two threads computes
the variables x and y of an opaque predicates. The trick is that x is either R*R if
threadS come seconds, either R*R * R*R threadT come second. In both cases the
OP invariant will hold.
int X, Y, C;

void* threadS (void* name) {
int R = rand ()%C;
sleep(rand () %10);
X = R*R;

}

void* threadT (void* name) {
int R = rand ()%C;
Y = 7*R*R;
sleep(rand () %10);
X *= X;

}

int main (void) {
pthread_t S, T;
C = sqrt( INT_MAX )/10;
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pthread_create (&S, NULL , threadS , "S");
pthread_create (&T, NULL , threadT , "T");

sleep(rand () %50);

if ((Y - 1) == X) { // 7y^2 - 1 != x^2
// always taken

}
}

Listing 8.4: Concurrence based invariant

Environment based invariant is the mean of using any invariant from the system or
libraries to create opaque predicates. For instance, as the stack is aligned on x86
machines, esp % 4 is always true. As a matter of example listings 8.5 and 8.6 shows
respectively to opaque predicates based on library invariants. Indeed, SetErrorMode
on Windows always returns the last error mode code thus the condition will always
be true. In the same vein, strcpy always returns the pointer to the destination
string thus we can easily craft an opaque predicate based on this invariant.
SetErrorMode (1024) ;
// potentially far away
if( SetErrorMode (12)) {

// always taken because return 1024
}

Listing 8.5: SetErrorMode opaque predicate

char s1 [14] = "Hello world";
char s2 [15] = "Say hi there";
if( strcpy (s2 ,s1) == s2) {

// always taken as strcpy returns s2
}

Listing 8.6: strcpy opaque predicate

This work solely focuses on arithmetic opaque predicates as they are the most opaques
predicates encountered. Recent work proposed to share apart the taxonomy of arithmetic
opaque predicates in three categories [Min+15]:

• invariant: always true/false regardless of inputs values

• contextual: opaque thanks to constraint on input domain values (environment)

• dynamic: similar to contextual, but the opaqueness is made by comparing two dy-
namic configurations that are made to be disjoint thanks to dynamically computed
values (eg: two disjoint pointer values etc..)
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8.1.3 Detecting opaque predicates
Intuitively, to detect an opaque predicate, the idea is to get back on all its data

dependencies. If the predicate is local, the distance from the predicate and its inputs
instanciation will be short and the predicate will be relatively easy to break. Otherwise
the distance is at most linear with the trace length which hardly scales in forward DSE.
Interestingly, for invariant opaque predicates, it is not required to get back on all its input
definition to break it, constraints on them might be enough. Consequently, a bb-dse with
a pre≤k approach might be very handy.

Furthermore, it allows to bypass some dynamic tricks that would mislead a reverser
into flagging a predicate as opaque. A good example is a predicate found in the packer
ASPack. The predicate seemingly opaque, is not to be opaque due to self-modifications
(Figure. 8.1). Statically, the predicate is opaque since bl is necessarily 0 but it turns out
that the second bytes of the instruction mov bl, 0x0 is being patched to 1 during the
execution in order to take the other branch when looping back later on.

[....]
10040fe:  mov bl, 0x0
10041c0: cmp bl, 0x0
1004103: jnz 0x1004163

1004105: inc [ebp+0xec]
[...]

ZF = 0 ZF = 1

1004163: jmp 0x100416d
[...]

0x10040ff at 
runtime

0x1

Figure 8.1: ASPack opaque predicate decoy

The key element of the approach is the aggregation of paths for a given bound k and
a given predicate ϕp at the specified location lp. Hence, the pre≤k is computed for every
new k-path to that predicate found in the trace. If all of the formulas generated evaluate
to unsat the predicate is flagged opaque, unknown otherwise. If both branches of
a predicate are covered by the trace the predicate is flagged not opaque. Table 8.2
summarizes the different possible status for a predicate.

Table 8.2: OP status w.r.t left/right branch status

Left Right Status
Covered Covered not opaque
Covered ∃π, pre≤kπ (l, ϕp) ` SAT unknown
Covered ∀π, pre≤kπ (l, ϕp) ` UNSAT opaque
Covered ∀π, pre≤kπ (l, ϕp) ` TIMEOUT timeout
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8.1.4 Evaluation
Goal We are interested in the following two questions: Q1: what is the detection ca-
pacity of our approach, and are the ratio of false positive, false negative acceptable? The
second question is Q2: is our approach efficient and scalable?

Benchmark and protocol In benchmarks, we have chosen the O-LLVM [Jun+15]
in which we implemented various opaque predicates (cf. Table 8.3). O-LLVM has been
selected because its core engine is open-source and it already implemented a mechanism for
opaque predicates. Other obfuscation engines were not open-source [Col+12] or outdated.
In order to evaluate the bb-dse, two sets of benchmarks were selected:

• 5 simple programs taken from the State-of-the-Art in DSE for obfuscation [YD15].
Each of the sample was obfuscated 20 times (to obtain the same number of sam-
ples than coreutils). Programs are: simple-if, bin-search, bubble-sort, huffman and
matrix-multiply.

• all 100 coreutils as a genuine dataset reference

Table 8.3: OP implemented in O-LLVM

Formulas Comment
∀x, y ∈ Z y < 10||2|(x× (x− 1)) (provided with O-LLVM)
∀x, y ∈ Z 7y2 − 1 6= x2

∀x ∈ Z 2|(x+ x2)
∀x ∈ Z 2|bx2

2 c (2nd bit of square always 0)
∀x ∈ Z 4|(x2 + (x+ 1)2)
∀x ∈ Z 2|(x× (x+ 1))

In total 200 binary programs were used. For each of them a dynamic execution trace
was generated with a maximum length of 20.000 instructions. By tracking where opaque
predicates were added in the obfuscated files we are able a priori to know if a given
predicate is opaque or not giving in consequence a set of ground truth values. Note
that all predicates in coreutils are considered to be genuine (and then false positive if
flagged as opaque). This large but controlled experiment allowed to test the accuracy
of results. The 200 samples sums up a total of 1,091,986 instructions trace length and
11,725 conditionnal jumps with 6,170 genuine predicates and 5,556 opaques among them.
Experiments were carried using different values for the bound k in order to find which one
fits best at finding all opaque predicates without yielding too much false positives. As a
matter of estimation a predicate marked opaque with k = 2 is more likely to be opaque
than a predicate marked opaque with k = 30 since the path constraint might make the
predicate unsatisfiable. Benchmarks were carried with a 5 second timeout per queries
(k-path + predicate).
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Results Table 8.4 and Figure 8.2 show respectively the graph and the table of the
relations between the number of opaque (OP), genuine (OK), false positive (FP)/negative
(FN) depending of the bound value k. The two last columns show the percentage of false
positive among the number of all predicates and the number of false postives opaque
predicates. These results represent predicates that only had one branch covered. Among
the 11,725 predicates, 987 were fully covered by the trace and were excluded from these
results, keeping 10,739 predicates (and 5,183 genuine predicates). The experiment shows
a tremendous peak of opaque detection with an approximate k = 10. Alongside, the
number steadily decreases as the number of false positive grows. All opaque predicates
are rightly flagged opaque for k = 16 and luckily no predicate raised any TIMEOUT. The
number of false positive 293 represent 6.28% of all predicates marked opaque and only
3.17% of all predicates for approximately 1.46 false positive per sample on average.

Note, that the path aggregation discussed in Section 8.1.3 provides a substantial gain
since it reduces of 4.62% the number of false positive for k16 (see Table 8.5).

Table 8.4: Opaque predicate detection results

k
OP (5556) Genuine (5183) TO FP/Tot FP/OP
ok miss ok miss (%) (%)

(FN) (FP)
2 0 5556 5182 1 0 0.01% 0.02%
4 903 4653 5153 30 0 0.26% 3.22%
8 4561 995 4987 196 0 1.67% 4.12%
12 5545 11 4890 293 0 2.50% 5.02%
16 5556 0 4811 372 0 3.17% 6.28%
20 5556 0 4715 468 2 3.99% 7.77%
24 5556 0 4658 525 7 4.48% 8.63%
32 5552 4 4579 604 25 5.15% 9.81%
40 5548 8 4523 660 39 5.63% 10.63%
50 5544 12 4458 725 79 6.18% 11.56%
. Timeout: 5 sec
. a TO counts as an UNKNOWN result (hence, classify the predicate as genuine)
. 10,739 predicates, 5,556 opaque predicates, 5,183 genuine predicates

Resolution time We have performed another experiment about computation time of
predicates solving to check if it scales on a large number of predicate (here more than
10000) with a 2.7GHz Core i7 and 16Go of RAM. Each predicate formula was solved
using Z3 with a 5 second timeout. Table 8.6 gives for each k-bound value the total time
taken for solving and the average per query. For k16 the average time per query is 0.018s
which tends to prove that this technique scales. Previous work aiming at solving invariant
opaque predicates [Min+15] obtained on average, 0.49s per queries (min:0.09, max:0.79).
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Figure 8.2: Opaque predicate detection results

Table 8.5: Difference without/with multi-path

K OK FP
∅ multip gain(%) ∅ multip gain(%)

2 5182 5182 0.00 1 1 0.00
4 5152 5153 0.02 31 30 3.23
8 4975 4987 0.24 208 196 5.77
12 4872 4890 0.37 311 293 5.79
16 4793 4811 0.37 390 372 4.62
20 4686 4713 0.57 495 468 5.45
24 4623 4651 0.60 553 525 5.06
32 4517 4558 0.90 640 604 5.62
40 4453 4492 0.87 696 660 5.17

. ∅ testing only one k-path for a predicate,
. multip testing all k-path leading to a predicate.
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For this kind of opaque predicates this approach delivers a tremedous speed up (more
than x27). These results validates the bb-dse advantages compared to strictly forward
DSE.

Table 8.6: Solving time

k Total time (s) Avg/query(s)
(10,739 queries)

2 89 0.008
4 96 0.009
8 120 0.011
12 152 0.014
16 197 0.018
20 272 0.025
24 384 0.036
32 699 0.065
40 1145 0.107
50 2025 0.189

Conclusion Table 8.4 with k=16 achieves a very low false positives rate thus addressing
Q1 since there is no more than 2 false positive per samples and the number of false positive
can be considered negligible compared to the number of true opaque predicates detected.
The analysis is also efficient and scales thanks to its independence from the trace length
which address Q2. As shown by Table 8.6 for k=16 the average time solving per query is
0.014s which is acceptable even with a large number of predicates to check.

8.2 Call/Stack tampering

8.2.1 Definition
A call stack tampering is the mean to alter the classical compilation scheme switching

from a function to another using the call and ret instruction, where ret jumps on the
address pushed on the stack by the call. The ret is tampered (a.k.a violated) if it does
not return to the expected returnsite pushed on the stack by the call. This thesis
proposes a more precise characterization and taxonomy of a call stack tampering.

A trivial example is given in Figure 8.3. From an attacker perspectives benefits are
twofold:

• the reverser might be lured into exploring useless code starting from the returnsite,

• the real target of the ret instruction is hidden from the static analysis stand point.
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Subsequently, this obfuscation disrupt the high-level function recovery step of disassembly
discussed in 2.1.3.

<main>: <fun>:
call <fun> [...]
..... // return site push X
..... // junk code ret //jump to X instead
..... // junk code //of return site

Figure 8.3: Standard stack tampering

Tail transition Additionally, some compilation schemes make the function bound re-
covery harder by breaking on purpose the call/ret association. This compilation scheme
called “tail transition” is aiming at reducing the function transition overhead in specific
cases. It applies when a function calls another function in the last instruction of its body.
The figure 8.4 shows an example taken from a program where the outcome of the function
is either -1 in eax either calling _mbrtowc. In this later case the call has been compiled so
that the function _mbrtwoc will perform the ret of sub_8053AB0. This can happen to be
an issue in DSE if the function tail called (here _mbrtwoc) is not symbolically executed
because its ret will not be visible.

Figure 8.4: Tail call to _mbrtwoc
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8.2.2 Taxonomy & Examples
From a semantic point of view, a ret is just an indirect jump to the first value on the

stack which can lead to various different scenarios of violation:

• ret performed with a dynamic jump

• no call but a ret (orphan ret)

• call, tampering of the return value and then ret

In this work we strengthen the violation definition to better characterize it. For
reverse-engineering purposes it is important to distinguish if a ret does not return well,
if the value has been overwritten or if the stack pointer (esp) has been tampered. This
approach identifies the following ret properties:

• integrity: does ret returns to the same address as pushed by the call? Characterize
if the tampering takes place or not. A call/ret pair is either [genuine] (returns
to the caller) or [violated];

• alignment: does the stack pointer (esp) is equal at call and at ret? If so, the
stack pointer is denoted [aligned], [disaligned] otherwise;

• multiplicy: in case of violation, is the current ret target the only possible value?
This case is denoted [single] and [multiple] otherwise.

As such, a well-behaving ret should be marked [genuine] and [aligned]. Conversly,
a tampered ret should be marked [violated] with optional tag [single],[multiple]
or [aligned],[disaligned].

This taxonomy helps discriminating different kinds of violations. Figure 8.5 shows an
example where the ret does not jump back to the return site with an offset but beyond its
own address with an offset. According to the taxonomy defined hereabove the violation
is detected as [violated], [aligned], [single] tags as it jumps to the return site with
an offset of +8.

address mnemonic comment
080483d1 call +5 //push 0x080483d6 as return (jump on next instruction)
080483d6 pop edx //pop the return address
080483d7 add edx, 8 //add 8 (size of pop+add+push+ret+invalid)
080483da push edx //put back the return value
080483db ret //returns at 0x080483de (beyond invalid byte)
080483dc .byte{invalid} //invalid byte (cannot disassemble)
080483de [...] //payload

Figure 8.5: Violation “call +5”
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8.2.3 Tampering detection
This study uses the bb-dse algorithm to detect the tampering. Of the author’s knowl-

edge DSE have never been used to detect such obfuscation. The purpose is to check the
infeasibility of the tampering by checking the validity of some predicates. As a recall, a
predicate φ is VALID iff: unsat(¬φ). To characterize the violation, the following queries
are performed:

• integrity: @[esp{call}] = @[esp{ret}]: Compare logically the content of the value
pushed at call (@[esp{call}]) with the one used to return (@[esp{ret}]). If it evaluates
to UNSAT, a violation necessarily occured ([violated]), valid the predicate re-
turns and cannot be tampered ([genuine]). If sat, the concrete values from the
trace are used to characterize the ret integrity;

• alignment: esp{call} = esp{ret}: Compare the logical esp value at the call and at
the ret. If it evaluates to valid, the ret necessarily returns at the same stack
offset ([aligned]), if it evaluates to unsat the ret is ([disaligned]), otherwise
the alignment cannot be characterized;

• multiplicity: R 6= @[esp{ret}]: Check if the logical ret jump target (@[esp{ret}]) can
be different from the concrete value (R) in the trace. If it evaluates to UNSAT the
ret cannot jump elsewhere and is flagged [single]. Be aware that [multiple]
cannot be found by our approach, unless several distinct (non-legit) targets are
observed at runtime. Indeed, finding new targets with DSE would require forward
DSE.

Table 8.7: Call stack tampering taxonomy

RT Status integrity alignement multiplicity
RT: OK RT: OK/KO [aligned] [disaligned]

RT Genuine VALID: [genuine] (proved) - VALID: [aligned] (proved)
[genuine] SAT: / - SAT: /

UNSAT: ∅ - UNSAT: [disaligned] (proved)
RT: [violated] RT: 1/[multiple]

RT Tampered - VALID: ∅ (idem) - VALID : ∅
[violated] - SAT: / - SAT: /

- UNSAT: [violated] (proved) - UNSAT: [single]

Table 8.7 summarizes all the possible states and attached tags. This stack tampering
analysis uses the same bb-dse as opaque predicates but with slightly differents settings.
In this case, the k value will be different for every call, ret pair. The trace is analysed in
a forward manner each call encountered is pushed to a call stack. Upon ret encounter,
the first call on the stack is poped and a pre≤k is performed where k is the distance
between the call and the ret. The different queries are then solved on this bounded
path slice. Two problems might corrupt the call stack breaking the synchronicity of
call,ret pairs:
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• Tail call [MM16] to non-traced function: As shown above tail calls are the mean of
calling functions using a jump instruction instead of call to avoid stack tear-down.
Similarly to the previous case, a tail call in a non-traced instruction will hide the ret
instruction, so the current call stack head should be poped to keep synchronicity.

• ret performed with dynamic jumps. As our analysis is ret centric any obfuscation
replacing all rets by dynamic jumps would make the analysis inefficient

8.2.4 Evaluation
Two benchmarks are performed to assess the analysis effectiveness. First, a controlled

benchmark is performed on samples, obfuscated on purpose. Second, a benchmark of
various packers is performed to ensure the scalability on real-world obfuscated programs.
The first benchmark is on the same 5 samples as opaque predicates, but obfuscated with
the source-to-source obfuscator Tigress [Col+12]. Files have been obfuscated with the
AntiBranchAnalysis transformation that replace all conditionnal branches with calls and
rets. The two schemes used here are:

• push; call; ret; ret (the second ret will jump on pushed value)

• push; ret (similar to previous)

The second experiment is a free wheel experiment on few packers to find if violations
were employed. Packed binaries are chosen as they are more likely to contain such protec-
tions. Indeed, they are usually the first line of protection to be broken in order to reach
a malware payload. In this experiment, the payload was a legitimate program (hostname
on Windows).

Table 8.8: Call stack tampering results

Sample
runtime genuine runtime violation

#ret † proved align/ #ret † alig/ proved
genuine disal disal single

simple-if 6 6 6/0 9 0/0 8
bin-search 15 15 15/0 25 0/0 24
bubble-sort 6 6 6/0 15 0/1 13
mat-mult 31 31 31/0 69 0/0 68
huffman 19 19 19/0 23 0/3 19
ASPack 11 9 9/0 6 5/1 2
ACProtect 0 0 0/0 48 45/1 45
Crypter 125 94 94/0 78 0/30 32
PE Lock 4 3 3/0 3 0/1 0

†each ret is counted only once
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Results Results are given in the table 8.8. The first 5 samples, totalize 218 different
ret. Among them 77 were genuine and 141 violated. Due to the homogeneity of schemes
inserted by Tigress, the diversity of tags is very low but interestingly enough results did
not yield any false positive nor false negative.

The second benchmark performed yields very interesting results. For instance on AC-
Packer, no ret were legit and the fact that almost all of them were flagged [single]
means ret are likely be used as static jumps. Results show that stack tampering obfusca-
tion is far from being negligible in these packers since approximately 54% to 100% of all
call/rets are tampered in these packers. As an example, three different kinds of tampering
were detected in the ASPack packer which correspond to the three examples (see Figures
10.2, 10.1 and 10.3 in Chapter 10).
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Analysis combination

This chapter present three different kind of analyses combinations based on the algo-
rithms and methods described previously in this thesis. The first combination is a disas-
sembly algorithm taking advantage off both dynamic and symbolic approaches limitating
the weaknesses of the purely static approaches. The second combination is a static and
symbolic combination based on abstract interpretation and DSE geared for vulnerability
discovery. The last combination is a forward and backward static analysis combination
aiming at detecting infeasible test requirements for software testing. Based on abstract
interpretation and weakest-precondition calculus, it differs from the other combination by
working at the source level.

9.1 Combination principles
In general, combining different approaches is a strength from the program analysis

perspective, especially when dealing with obfuscation as one might target a specific kind
of analysis. As an example, Marion et al proposed a mixed static and dynamic approach
for disassembly purposes [Bon+15] called concatic disassembly. The idea is to enrich static
disassembly with dynamic analysis allowing to handle both self-modification and code-
overlapping, which techniques are hindering static analysis. The disassembly obtained is
more precise and efficient than a pure static disassembly. The key point of this approach
is to obtain a proper segmentation of the different self-modification layers.

Forward/Backward combination Let’s take the formal approach; some properties
are to be checked on a given program. Various semantic analyses techniques like abstract
interpretation, weakest-precondition calculus or symbolic execution exist to address this
problem but each of them have theirs particularities. The two main characteristics are
whether the analysis works forward or backward and whether the analysis is under or
over-approximated. Table 9.1 shows the characteristics of different analyses and their
abilities to detect some properties. For instance abstract interpretation computes an
over-approximated invariant of the whole program, while symbolic execution computes
under-approximated but more precise values for a given path. Similarly, forward DSE is
able to generate new inputs to cover a given path, while backward-DSE cannot. But it
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scales on any path length. It all depends on predicates needed to be checked as chown in
the previous Chapter 8.

Table 9.1: Analysis techniques comparison
Weakest-Precondition Abstract Interpretation DSE bb-dse Random Testing

Approximation Over-approximation Over-approximation Under-approximation Under-approximation Under-approximation
Type Static Static Dynamic/Symbolic Dynamic/Symbolic Dynamic
Direction Backward Forward Forward Backward Forward
Produce predicate statement Invariant on the program Constraints on path Constraints on Inputs + coverable paths

and inputs sub-path
Use Function Program path path program (+tests requirements)

Combination interaction Another critical aspect when designing an analysis combi-
nation is to determine how the two analyses will communicate and what will the informa-
tion exchange be. This depends on the information and results produced by the analysis.
For instance, abstract interpretation can transmit information about its invariant (see
Section 9.4), while fuzzing or random testing yield inputs and information about covered
paths. A strict black-box integration usually weaken the potential of algorithms combi-
nation while a gray-box or a white-box combination unleash the analyses potential but is
harder to do.

9.2 Sparse disassembly: Use-case binary-level

9.2.1 Introduction
Standard disassembly We call legit an instruction in a binary code if it is part of a
real execution of the code. Two qualities expected for a disassembler are (1) safety: does
the algorithm recover only legit instructions? and (2) completeness: does the algorithm
recover all legit instructions? Standard disassembly approaches essentially include static
recursive disassembly, static linear sweep and dynamic disassembly.

• Recursive disassembly consists in exploring the executable file from a given entry-
point, recursively, following the possible successors of each instructions. A recursive
disassembly may miss a lot of instruction, typically, because of computed jumps (jmp
eax) or of self-modification. Like all static algorithms, the approach can easily be
fooled into disassembling junk code from opaque predicates or call/stack tampering
spurious bytes. The approach is neither safe nor complete.

• Linear sweep consists in decoding linearly all possible instructions in executable
code sections. The technique aims at being more complete than recursive traversal,
yet it comes at the price of many additional mis-interpreted code instructions. Like
all static techniques it can still miss instructions hidden by code overlapping or
self-modification. Hence the technique is unsafe and often incomplete on obfuscated
codes.
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• Dynamic disassembly retrieves only instructions and branches observed at run-
time on one or several executions. That technique is safe, but possibly very incom-
plete. Yet, it recovers instructions masked by self-modification, code overlapping,
which are out of reach for static disassembler.

For example, objdump is based on linear sweep, while IDA performs a combination of
linear sweep and recursive disassembly (enhanced with severals heuristics).

Static/Dynamic combination As mentioned in previous Section (9.1), various ap-
proaches mix both static and dynamic analyses. Doing so helps to bypass the dynamic
jumps, self-modification and code-overlapping issues. Nonetheless, it cannot address dead
code and opaque predicates which will still be disassembled. Similarly, dead returnsite
(never executed) due to call/stack tampering will still be disassembled. While such com-
bination is better than static or dynamic alone, it can still be improved to circumvent
aforementioned obfuscations.

9.2.2 Principles
As already explained above, standard disassembly approaches are not satisfactory.

Hence, we propose a sparse disasembly, an algorithm based on dynamic disasssembly
reinforced with a static disassembly guided with complementary information about ob-
fuscation (computed by backward-bounded DSE). The goal is to provide a more accurate
and sound disassembly. The approach takes advantage of the two analyses presented in
Sections 8.1 and 8.2 in the following way:

• use dynamic values found in the trace to keep disassembling after indirect jumps
instructions and disassemble the “self-modified” code;

• use a static recusive disassembly algorithm to enlarge the dynamic disassembly but
the disassembly is guided by the symbolic execution. Thus it takes into account the
following properties:

– use opaque predicates found by bb-dse to avoid disassembling dead branches
(thus limiting the number of recovered non legit instructions);

– use call/stack tampering information found by bb-DSE to disassemble ret
targets in case of violation, as well as not to disassemble the returnsite of
the call in this case.

Implementation This algorithm has been integrated in the existing recursive traversal
disassembly algorithm implemented in Binsec. The bb-dse procedure sends OP and ret
information to the modified disassembler which takes them into account when recursively
disassembling the program.
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9.2.3 Evaluation
Opaque predicates The first benchmark aims at testing the disassembly of O-LLVM
obfuscated samples using the sparse disasembly approach. Table 9.2 gives the results of
the coverage for IDA, Objdump, Binsec (recursive traversal) and Binsecsparse disasem-
bly on few obfuscated samples. Once obfuscated, files are approximately 8 times their
original size. IDA uses both recursive disassembly, linear sweep and some heuristics to
disassemble. Objdump does linear-sweep only. IDA and Binsec results are almost identi-
cal because none of the samples appear to have indirect jumps. The Objdump linear-sweep
always over-disassemble some bytes at the end of functions. Interestingly, the sparse disas-
embly provides an average gain of 22.48% in terms of instructions coverage. The number
of instructions is still far bigger than the original program. So, while it is possible to
prune the dead branches, the instructions computing the opaque predicate still have to
be computed.

Table 9.2: Sparse disassembly opaque predicates

sample
no Obfuscated gain
obf. perfect IDA Objdump Binsec vs IDA

rec. sparse (sparse)
simple-if 37 185 240 244 240 185 23,23%
huffman 558 3226 3594 3602 3594 3226 10,26%
matrix_multiply 249 854 1075 1080 1075 854 20,67%
bin_search 105 833 1110 1115 1110 833 24,95%
bubble_sort 121 1026 1531 1537 1531 1026 32,98%

Call/Stack tampering Similarly, we have performed a call/stack tampering bench-
mark on programs obfuscated this time with Tigress. In contrast to the previous bench-
mark, the aim is to have the bigger (yet accurate) possible coverage. The obfuscation
turns every conditional jumps into calls and rets. No any additional spurious instructions
are introduced. For this reason, the approximate size of obfuscated programs is only twice
bigger.

In this benchmark, IDA and Objdump perform well thanks to their linear-sweep. Bin-
sec in recursive traversal performs badly with rets and some jump eax added by the
obfuscator. Nevertheless, the sparse disassembly performs very well with an instruction
differential ranging from 12 to 63. A manual verification showed that this difference was an
over-disassembly of returnsite that is never executed due to the stack tampering. Once
again, the sparse disasembly provided a better and sound disassembly of the program.

Coreutils The last benchmark aims at proof-testing the sparse disasembly on larger
obfuscated binary samples to test its efficiency. Thus, we have obfuscated the coreutils
using O-LLVM in order to insert opaque predicates into them. Unfortunately, it was not
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Table 9.3: Sparse disassembly stack tampering

sample
no Obfuscated gain
obf. perfect IDA Objdump Binsec vs IDA

rec. sparse (sparse)
simple-if 37 83 95 98 30 83 14.45%
huffman 558 659 678 683 526 659 2.80%
matrix_multiply 249 461 524 533 23 461 12.0%
bin_search 105 207 231 238 47 207 10.39%
bubble_sort 121 170 182 185 89 170 6.6%

possible to mix it with Tigress that uses some inline assembly constructs not supported
by Clang (and required by O-LLVM).

Table 9.4 shows the results on 5 coreutils selected randomly. While the samples are sig-
nificantly bigger, the ratio between Objdump/IDA and Binsec rec/sparse remains roughly
similar. Obviously, the coverage of both Objdump and IDA is larger since it takes advan-
tage of the linear sweep not to miss any function. Yet, they also disassemble lots of junk
code.

These experiments have demonstrated that sparse disasembly is an effective way to
enlarge a dynamic disassembly, in a both significant and safe manner. Indeed, sparse
disassembly recovers between 6x and 16x more instructions than dynamic disassembly,
yet it still recovers slightly less instructions than recursive disassembly (including less
junk), and much less than linear sweep – partly due to the focused approach of dynamic
disassembly. Hence, sparse disassembly stays close to the original trace.

Table 9.4: Sparse disassembly coreutils

sample
Obfuscated

Tr.len Objdump IDA Dynamic Binsec
disas. rec. sparse

basename 1,783 20,776 20,507 1,159 8,163 7,894
env 3,692 19,714 19,460 477 6,916 6,743
head 17,682 32,840 32,406 1,299 20,098 19,807
mkdir 1,436 57,238 56,767 1,407 10,562 10,428
mv 14,346 115,278 114,067 5,261 82,502 81,596

Conclusion The carried experiments brought very good and accurate results about con-
trolled samples, achieving perfect disassembly. From this stand-point, sparse disasembly
performs better than the combination of both recursive and linear like in IDA, including
up to 30% less recovered instructions than IDA. The coreutils experiments showed that
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sparse disassembly is also an effective way to enlarge a dynamic disassembly in a both
significant and safe manner.

Yet, our sparse disasembly algorithm is currently limited by the inherent weaknesses of
recursive disassembly for example the handling of all the computed jumps targets would
require advanced pattern techniques.

Thus, sparse disasembly performs better on obfuscated samples than recursive dis-
assembly alone and limitate the over-disassembly shortcoming of linear-sweep based ap-
proaches.

9.3 Use-After-Free detection: Use-case binary exploita-
tion

9.3.1 Introduction
This works has been performed in collaboration with Verimag Grenoble and especially

Josselin Feist to detect and exploit Use-After-Free (UaF) vulnerabilities. The technique is
based on static analysis and Dynamic Symbolic Execution(DSE) and led to the discovery
of various vulnerabilities and most notably CVE-2015-5221 [Mit15]. An UaF appears
when a heap pointer is used after having been freed. Such memory corruptions can in
some cases be leveraged by an attacker to execute arbitrary code and consequently to
craft an exploit. Finding an UaF is particularly difficult as it is only triggerable after the
sequence of events malloc, free and use for a given resource. While these three events
can be located at distant area of the code. Finding such sequences requires some path
coverage algorithm, which are non-linear in the general case. Moreover, it requires, at
some extend, alias analysis to compare pointers on the heap. It also requires alias analysis
which is known to be hard for static analyzer.

9.3.2 Combination
The combination first performs a static analysis of the code and extract a weighted

slice containing relevant events (malloc,free,use). This is later used by a guided dynamic
symbolic execution to trigger the bug and to generate appropriate inputs. Static analysis
phase aims at reducing the coverage surface for the DSE in order to improve its efficiency.
The DSE algorithm is also empowered with specific heuristics guiding the path selection
and enumeration so as to maximize the chance to find a solution quickly.

• Static Analysis is performed by a tool GUEB [Fei15] which performs a value anal-
ysis based on abstract interpretation keeping as abstract states the set of allocated
and freed memory chunks. Within the same chunk, if the sequence malloc, free,
use is found, a slice containing all paths to the three events is extracted from the
CFG. This slice is then transmitted to the DSE for UaF vulnerability discovery.

• Guided DSE performs a path exploration of each slice provided by the static anal-
ysis, to validate or invalidate each candidates. For a given slice, the DSE explores
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all the possible paths until finding one satisfying the conditions to trigger the UaF.
Enumerating paths can lead to the so called path explosion problem. Even though
the analysis is performed on a slice it also uses its guidance heuristics to return the
best candidate (path) based on a score. The score is based on the distance between
the three points of interest (malloc, free, use).

9.3.3 Evaluation
Experiments are peformed on several versions of the DSE namely with and without

guiding heuristics. Results are compared against the standard fuzzers AFL [lca16] and
radamsa [Arc16]. The experimentation is performed on JasPer8, an image conversion
library. The analysis has found an UaF in the mif_process_cmpt function which subse-
quently led to the CVE-2015-5221 identifier [Mit15]. From the performance perspectives,
without the guiding heuristics Binsec/se is unable to generate a PoC to trigger the
vulnerability while with the heuristics a PoC is generated in 20 minutes.

9.3.4 Conclusion
This combination approach designed for UaF detection relies on the use of a weighted

slice computed by abstract interpretation and path coverage with symbolic execution. It
proved to be efficient on real-world applications. In addition, guiding heuristics proved to
be useful and further work are ongoing to make them more generic. Indeed, they are for
now driven by examples encountered.

9.4 [Bonus] Infeasible tests requirements: Use-case
source-level

This section shows a use-case where the forward/backward combination approach has
successfully been applied to a slightly different domain, namely software testing at source
level. As the language and tools change, the approach remains similar. It emphasizes the
portability of such approach accross languages and an example of the variety of domain
where it can be applied. This work has been published in [Bar+15b].

9.4.1 Software Testing: Introduction
In software testing, a coverage criteria specify the requirements to be covered by a test

case. These coverage criteria are normative test requirements that the tester must satisfy
before delivering the software under test. Among existing coverage we have: decision
coverage (DC), condition coverage (CC), multiple condition coverage (MCC), function
coverage or weak mutations (WM). Figure 9.1 illustrates possible encodings for selected
critera.

8https://www.ece.uvic.ca/ frodo/jasper
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Figure 9.1: Standard coverage criterias

Labels Bardin et al use labels [Bar+14; BKC13] as a convenient formalism to specify
and to encode several structural testing criterias into a unified solution making use of
existing verification tools. Given a program P , a label l is a pair 〈loc, ϕ〉 where loc is
a location in P and ϕ is a predicate over the internal state at loc. We say that a test
datum t covers a label l = 〈loc, ϕ〉 if there is a state s such that t reaches 〈loc, s〉 and s
satisfies ϕ. An annotated program is a pair 〈P,L〉 where P is a program and L is a set
of labels in P . The main benefit of labels is to unify the treatment of test requirements
belonging to different classes of coverage criteria. While Bardin et al explored the question
of automatic test generation with labels [BKC14], we focus in this section on the problem
of infeasibility test requirement detection.

9.4.2 Problematic
In practice, such test criterias are limited by the infeasibility problem [Wey93; WHH80;

YM89], where a requirement cannot be covered by any test case due to inherent program
structure. In addition to yield a worse code coverage, automated testing tools might waste
time trying to cover the criteria. Identifying them is an undecidable problem [GWZ94],
so it affects the decision to stop testing as it requires the knowledge of what remains to
be covered. As consequence, it is difficult to accurately measure the coverage of the test
suite which is usually used to stop the testing process (usually 80% to 100%).

9.4.3 Combination
The motivation of the combination is based on the fact that infeasible requirements

can be transformed into assertion validity problem verifiable with various analyses. This
study considers two analyses Value Analysis (forward) and Weakest Precondition calculus
(backward) as basis of the combination. The idea is to compute an over-approximation of
all reachable program states with Value Analysis(VA). Then with the Weakest Precondi-
tion(WP) and an assertion to check, the goal is to compute a proof obligation equivalent
to the validity of the assertion. The combination improvement is to extract relevant in-
formation from the state approximation of VA for the property to check, and to submit
them as assume to WP to enforce and improve its decision power. This communication
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is performed in a Grey-box manner, by inserting assume annotations in the common an-
notation language used (see the next Section 9.4.4). Let P , be a program, and A a set of
assertions in P which we want to check the validity.

The combination VA ⊕WP depicted hereabove is divided in different steps: (1) VA
analysis computes once for all a state approximation S of the program. (2) For each a ∈ A,
if a is valid the method terminates. Otherwise, the greybox part starts by extracting the
set Ra of variables and locations relevant to a. Next, the set Ra and the previously
computed approximation S are used to deduce properties of relevant variables that will
be submitted as hypotheses to the last step. (3) a WP analysis step checks if the assertion
a can be proven valid using the additional hypotheses in H.

Advantages The proposed combined approach takes benefit both from the global preci-
sion of the approximation computed by VA for the whole program and the local precision
of analysis for a given assertion ensured by WP. Therefore, this technique is likely to
provide a better precision than the two methods used separately. Careful selection of in-
formation transferred from VA to WP tries to minimize information exchange: the amount
of useless (irrelevant or redundant) data is reduced, thanks to the greybox combination.
On the other hand, even if not being purely black-box, the grey-box approach remains
lightweight and non-invasive: only basic knowledge of the WP technique is required to
implement the validation step, and only basic knowledge of datastructures and contents
of approximations computed by VA is necessary to query them and to produce hypothe-
ses at the HV A

P step. Neither VA nor WP requires any modification of the underlying
algorithms. Moreover, the approximation S is computed only once, and then used for all
assertions. These elements are the foundation of the two methods combination.

9.4.4 Implementation
This combination was developped within the LTest testing toolkit [Bardin2014TAP]

into a component called LUncov dedicated to the detection of infeasible test requirements.
This toolkit uses the DSE engine PathCrawler [Wil+05] itself included as a plugin into
Frama-C [Cuo+12]. Thus, this combination takes advantage of both Abstract Interpre-
tation (Value Analysis) and Weakest Precondition analysis provided with Frama-C. Also,
Frama-C provides a common Abstract Syntax Tree (AST) and a ANSI/ISO C Specifica-
tion Language (ACSL) [Cuo+12] to express annotations used by LTest to generate test
requirements. Thus, hypotheses H are implemented as ACSL annotations assumed to be
true.

Example The use case presented in Figure 9.1 aims at emphasis benefits of combining
both Value Analysis and Weakest Precondition to prove properties that would not be
possible otherwise. Note that Frama_C_interval is a built-in Frama-C function that return
a non-deterministic value into the given range and used by the different Frama-C analyses.
int main () {

int a = Frama_C_interval (0 ,20);
int x = Frama_C_interval ( -1000 ,1000);
return g(x,a);
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}

int g(int x, int a) {
int res;
if(x+a >= x)
res = 1;
else
res = 0;
//assert res == 1;

Listing 9.1: Use case source code

The assertion in function g cannot be proved neither by value nor by wp alone on a
platform like Frama-C. value is unable to prove that x+a ≥ x is always true because
it lacks of relational domains and does not recognize that the x on both side of the term is
the same variable and having the same value9. The wp because it works on a per function
basis, has no knowledge of x and a valuation in the function g and because of possible int
overflows it cannot prove the assertion.

Using our combined method, we first run value on the whole program, then we bring
all relevant variable information into g, which is transformed into the code presented in
Figure 9.2. With this additional information, wp gained enough information to prove the
assertion.
int g(int x, int a) {

// @assume a >= 0 && a <= 20;
// @assume x >= -1000 && x <= 1000;
int res;
if(x+a >= x)
res = 1;
else
res = 0;
// @assert res == 1;

}

Listing 9.2: Use case enriched with hypothesis for WP

9.4.5 Experiments & Results
In the experiments the tools mentionned in Section 9.4.4 were used on 12 benchmarks

coming from the Siemens test suite (tcas and replace), the Verisec benchmark (get_tag
and full_bad from Apache source code) and MediaBench (gd from libgd). We also
consider three coverage criteria: CC, MCC and WM [AO08]. Each of these coverage
criteria were encoded with labels as explained in Section 9.4.1. Our overall benchmark
consists in 26 pairs program–test requirements. Among the 1,270 test requirements of this
benchmark, 121 were shown to be infeasible in a prior manual examination. We solely
focus here on the detection efficiency. The impact on test generation (not the focus of
this thesis) is detailled in the article [Bar+15b].

9relational domains have very recently been added into VA prior to this work
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We then compared the percentage of infeasible requirements detected per program
and per criterion with 3 methods. (1) abstract interpretation alone with VA, (2) weakest
precondition alone with WP and (3) VA ⊕WP the combination of the two. Table 9.5
gives the results in terms of detection for each pair program/criterions.

From these results it becomes evident that all the studied methods detect numerous
infeasible requirements. VA detects 84 infeasibles requirements, WP 73 and the combina-
tion of the two 118. Out of the three methods, our combined method VA⊕WP performs
best as it detects 98% of all the infeasible requirements. The VA and WP methods detect
69% and 60% respectively. Interestingly, VA and WP do not always detect the same
infeasible labels. For instance, WP identifies all the 11 requirements in fourballs–WM
while VA finds none. Regarding the utf8-3–WM, VA identifies all the 29 labels while WP
finds only two. This is an indication that a possible combination of these techniques,
such as the VA⊕WP method, is fruitful. Thus, VA⊕WP finds at least as much as VA
and WP methods on all the cases, while in some, i.e., replace-WM and full_bad–WM, it
performs even better.

These results have shown that the combination VA⊕WP performs better than VA or
WP alone, and achieve a 98% rate of detection on our benchmarks. Thus, the combination
of forward/backward analyses sketched at the begining of the chapter shows that it finds
application beyond binary analysis.
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Table 9.5: Infeasible Label Detection Power

Program LOC Crit. #Lab #Inf VA WP VA ⊕ WP
#D %D #D %D #D %D

trityp 50 CC 24 0 0 – 0 – 0 –
MCC 28 0 0 – 0 – 0 –
WM 129 4 4 100% 4 100% 4 100%

fourballs 35 WM 67 11 0 0% 11 100% 11 100%
utf8-3 108 WM 84 29 29 100% 2 7% 29 100%
utf8-5 108 WM 84 2 2 100% 2 100% 2 100%
utf8-7 108 WM 84 2 2 100% 2 100% 2 100%
tcas 124 CC 10 0 0 – 0 – 0 –

MCC 12 1 0 0% 1 100% 1 100%
WM 111 10 6 60% 6 60% 10 100%

replace 100 WM 80 10 5 50% 3 30% 10 100%
full_bad 219 CC 16 4 2 50% 4 100% 4 100%

MCC 39 15 9 60% 15 100% 15 100%
WM 46 12 7 58% 9 75% 11 92%

get_tag-5 240 CC 20 0 0 – 0 – 0 –
MCC 26 0 0 – 0 – 0 –
WM 47 3 2 67% 0 0% 2 67%

get_tag-6 240 CC 20 0 0 – 0 – 0 –
MCC 26 0 0 – 0 – 0 –
WM 47 3 2 67% 0 0% 2 67%

gd-5 319 CC 36 0 0 – 0 – 0 –
MCC 36 7 7 100% 7 100% 7 100%
WM 63 1 0 0% 0 0% 1 100%

gd-6 319 CC 36 0 0 – 0 – 0 –
MCC 36 7 7 100% 7 100% 7 100%
WM 63 0 0 – 0 – 0 –

Total 1,270 121 84 69% 73 60% 118 98%
Min 0 0 0% 0 0% 2 67%
Max 29 29 100% 15 100% 29 100%
Mean 4.7 3.2 63% 2.8 82% 4.5 95%

#D: number of detected infeasible labels %D: ratio of detected infeasible labels
–: no ratio of detected infeasible labels due to the absence of infeasible labels
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Real-World case studies

This chapter discusses two case studies aiming at emphasizing the efficency of detection
methods designed in the previous Chapter 8. The first case study examined is a free
evaluation of the detection algorithms on packers. The second, one is more targeted to a
single piece of malware which particularity is to be heavily obfuscated and to have been
used in severe targeted attacks.

10.1 Large scale evaluation of packers

10.1.1 Context & Dataset
Packers Packers are programs embedding another program. This can be done for com-
pression purposes but its more usually done for protecting the embedded software of the
reverse-engineering. While they can be used for legitimate purposes lots of malware are
using either commercial or custom packers to hide their code. Because packers are usually
the first layer of protection to be broken before any in-depth malware analysis, performing
a large scale analysis on them is worthy. In addition, experience shows that packers are
more likely to use obfuscation than malware payload that usually relies on such overlay
of protection. We want to see if our techniques are able to detect OPs or CS tampering
on real packers.

Targeted obfuscation The two obfuscations directly targeted are opaque predicates
and call/stack tampering thouroughtly discussed in Section 8.1 and 8.2. Hence, perform-
ing these two analyses in a black-box manner, without prior knowledge of the code is a
great way to validate at a larger scale the efficiency of the two detection analyses.

Dataset The packer set originates from previous studies performed on standard packers,
especially concatic disassembly benchmarks [Bon+15]. All packers are Windows binaries
used to pack the hostname utility. Choosing hostname as stub binary is totally arbitrary
but has the advantage to be small and to provide a good oracle to know whether or not
the packing succeed and whether the binary kept the same observable behavior or not.
The list of packers is not exhaustive as newcomers appear regularly but still provide a
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large representative panel (33). A priori, we do not know if there is any opaque predicates
or call/stack tampering. The only obfuscation surely present is the self-modification.

10.1.2 Evaluation Settings

The instrumentation was limited to 10M instructions. All samples reaching this limit
were not analysed because yielding a partial trace. The dynamic instrumentation ap-
peared not to be perfect, due to the number of process, threads created and all the
counter-measures used within the packers. As a sanity check, we ensure that the exe-
cution trace was successfully created without unexpected termination (tr.ok) and if the
hostname of the machine appeared at the end of the execution (host) in order to analyse
the trace. Also as a comparison with the previous study, the number of waves detected
is put in perspective between Codiasm and Binsec. The modeling varies and thus impact
the number of waves yielded. The difference lays in the way to propagate the marking of
memory while doing the dynamic instrumention and is discussed in Annex B.

Analyses The bound used for the opaque predicates detection is 16 as it emerged as the
best value from the benchmarks performed in Section 8.1.3. We note, OK, OP, To and
Covered, the predicates which are respectively not opaque, opaque, unknown (because
of timeout) and fully covered (both branches) by the dynamic instrumentation. The
call/stack tampering is run without specific parameters.

10.1.3 Results

Some results of the previous study are given like the number of processes (#proc) and
the number of threads(#th) spawned. Table 10.1 gives the complete results of the two
analyses. Interestingly, some packers do not make use of obfuscation while others seems to
use it heavily e.g Crypter. Discriminating true positive from false positive would require
to check all of them individually. It is worth noting that we only detect OPs and CSTs
and it is very likely that packers are using way more tricks. The first constatation is that
both algorithms scale well on most samples and succeed in finding both OPs and CSTs.

Anomalies Among the 33 packers, three of them (Enigma, svk, Themida) reached the
10M instructions and were consequently not analysed. Similarly, Molebox, Mystic and
Setisoft led the analysis to fail by filling the memory. Another anomaly is raised by
ACProtect and Crypter. The trace was successfully retrieved but the machine hostname
did not appear on the terminal during instrumentation which might indicate that the
binary was not well packed. Finally, the last anomally is due to the trace size of certain
packed malware which are suspiciously small like JD Pack(42), Obsidium(21) or Yoda’s
Protector(17). The two explanations for that are either the instrumentation got detected
and the process stopped, either the packers kept working in a different process/thread that
the instrumentation did not managed to catch up.
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Table 10.1: Packer experiment OP & Stack tampering

Packers
Static Dynamic Obfuscation detection
Size #Wave Opaque Predicates (k16) Stack tampering
prg #Tr.len (tr.ok/host) #proc #th (Codisasm/Binsec) OK OP To Covered OK(a/d) Viol(a/d/s)

ACProtect v2.0 101K 1.813.598 (X,×) 1 1 634/4 74 159 0 9 0 (0/0) 48 (45/1/45)
Armadillo v3.78 460K 150.014 (×,×) 2 11 164/1 1 20 0 1 2 (2/0) 0 (0/0/0)
Aspack v2.12 10K 377.349 (X,X) 1 1 2/2 32 24 0 136 11 (7/0) 6 (1/4/1)
BoxedApp v3.2 903K / (×,×) 1 15 5/- - - - - - -
Crypter v1.12 45K 1.170.108 (X,×) - - -/0 263 24 0 136 125 (94/0) 78 (0/30/32)
Enigma v3.1 1,1M 10.000.000 (×,×) - - -/1 - - - - - -
EP Protector v0.3 8,6K 250 (X,X) 1 1 1/1 10 1 0 2 4 (2/0) 0 (0/0/0)
Expressor 13K 635.356 (X,X) 1 1 1/1 42 8 0 39 14 (10/0) 0 (0/0/0)
FSG v2.0 3,9K 68.987 (X,X) 1 1 1/1 11 1 0 14 6 (4/0) 0 (0/0/0)
JD Pack v2.0 53K 42 (×,X) 1 1 4/0 2 0 0 0 0 (0/0) 0 (0/0/0)
Mew 2,8K 59.320 (X,X) - - -/1 11 1 0 18 6 (4/0) 1 (0/0/0)
MoleBox 70K 5.288.567 (X,X) 1 1 2/2 307 60 0 128 X X
Mystic 50K 4.569.154 (X,X) 1 1 3/1 X X X X X X
Neolite v2.0 14K 42.335 (X,X) 1 1 1/1 95 1 0 42 9 (3/0) 0 (0/0/0)
nPack v1.1.300 11K 138.231 (X,X) 1 1 1/1 41 2 0 34 21 (14/0) 1 (0/0/0)
Obsidium v1364 116K 21 (×,X) - - -/0 1 0 0 0 0 (0/0) 0 (0/0/0)
Packman v1.0 5,9K 130.174 (X,X) 1 1 1/1 12 1 0 21 7 (4/0) 0 (0/0/0)
PE Compact v2.20 7,0K 202 (X,X) 1 1 3/1 11 1 0 1 4 (2/0) 0 (0/0/0)
PE Lock 21K 2.389.260 (X,X) 1 1 14/6 53 90 0 42 4 (3/0) 3 (0/1/0)
PE Spin v1.1 26K / (×,×) 1 1 79/- - - - - - -
Petite v2.2 12K 260.025 (×,×) 1 1 2/0 60 19 0 45 4 (1/0) 0 (0/0/0)
RLPack 6,4K 941.291 (X,X) 1 1 1/1 21 2 0 25 14 (8/0) 0 (0/0/0)
Setisoft v2.7.1 378K 4.040.403 (×,×) 1 5 31/4 X X X X X X
svk 1.43 137K 10.000.000 (×,X) - - -/0 - - - - - -
TELock v0.51 12K 406.580 (×,X) 1 1 17/5 0 2 0 5 3 (3/0) 1 (0/1/0)
Themida v1.8 1,2M 10.000.000 (×,X) 1 28 105/0 - - - - - -
Upack v0.39 4,1K 711.447 (X,X) 1 1 2/2 11 1 0 30 7 (5/0) 1 (0/0/0)
UPX v2.90 5,5K 62.091 (X,X) 1 1 1/1 11 1 0 26 4 (2/0) 0 (0/0/0)
VM Protect v1.50 13K / (×,X) 1 1 0/0 - - - - - -
WinUPack 4,0K 657.473 (X,X) 1 1 2/2 12 1 0 33 7 (5/0) 1 (0/0/0)
Yoda’s Crypter v1.3 12K 240.900 (×,X) 1 1 3/3 38 1 0 16 4 (3/0) 9 (0/1/0)
Yoda’s Protector v1.02 18K 17 (×,X) 1 1 5/0 1 0 0 0 0 (0/0) 0 (0/0/0)

#Tr.len: execution trace length – tr.ok: whether the executed trace was gathered without
exception/detection – host: whether the payload was successfully executed (printing the hostname of
the machine) – #proc: number of process spawned – #th: number of threads spawned – #Wave:

number of self-modification waves recorded according to Codisasm and Binsec – (a/d/s):
(aligned/disaligned/single)
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Detection results Except for Molebox, Mystic and Setisoft the analysis succeed on
all packers. Thus, it scales well on few millions instructions traces. It managed to find
149 call/stack tampering and 420 opaque predicates. Quantifying the number of false
positive would require an exhaustive verification but manual checking revealed that most
of them are true positive.

10.1.4 Closer look at the results
Given the amount programs and the amount of predicate tested, it is not possible to

check manually all the results, but some manual inspection yield interesting scheme and
patterns described below.

Opaque predicates While some packers do not seem to really use OP with a very few
OP detected (probably false positive) other packers are using it heavily like ACProtect,
Molebox or PE Lock. Most predicates found are strictly exclusive conditions as shown in
listing 10.1.
1018 f7a js 0 x1018f92
1018 f7c jns 0 x1018f92

Listing 10.1: Sample of opaque predicate ACProtect

Every pair of conditions were found js/jns, ja/jbe, jp/jnp, jo/jno etc. This
example shows that our approach successfully detect both invariant and contextual opaque
predicates. Funnily Armadillo uses the classic xor, jnz pattern as shown in listing 10.2.
10330 ae xor ecx , ecx
10330 b0 jnz 0 x10330ca

Listing 10.2: Sample of opaque predicate Armadillo

Call/Stack tampering Only ACProtect and Crypter are heavily using call stack tam-
pering. ASPack also do but at a lower scale. Meanwhile, patterns used are rather trivial.
The most common is push; ret. ACProtect is brutal in its approach as the first 4 in-
structions executed are two violations (see listing 10.3). It also uses slightly more evolved
patterns with in-place violation as given in listing 10.4. Last, packers seemingly using
call/stack tampering are using the ret instruction to perform the transition to the last
self-modification layer. Packers using a tampered ret to perform the transition to the
payload are: ACProtect, ASPack, Crypter, Mew, nPack, PE Lock, TELock, Upack,
WinUpack and Yoda’s Crypter.
0 1001000 push 16793600
1 1001005 push 16781323
2 100100 a ret
3 100100 b ret

Listing 10.3: First instructions of ACProtect
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1004328 call 0 x1004318
1004318 add [esp], 9
100431 c ret

Listing 10.4: Sample call/stack tampering ACProtect

The taxonomy defined in Chapter 8 helped discriminating different kinds of violations
found for instance in the ASPack packer. Figure 10.2, 10.1 and 10.3 show the exemple
of three different kinds of call stack tampering found in the ASPack packer. In the first
exemple (Figure 10.2), the tampering is detected with labels [violated], [disaligned]
since the stack pointer read the ret address at the wrong offset. In the second example
(Figure 10.1), the return value is modified in place. The tampering is detected with
the [violated], [aligned], [single] tags as it jumps to the return site with an offset
of +1. The last example (Figure 10.3), takes place between the transition of two self-
modification layers and the ret is used to do the tail transition with the payload of the
packer. This violation is detected with [violated], [disaligned], [single] since the
analysis matches an unrelated call far upper in the trace with a different return site.
Note that the instruction push 0x10011d7 at 10043ba is originally push 0 but is patched
by the instruction at 10043a9 triggering the entrance in a new auto-modification layer
when executing it.

address len mnemonic comment
1004a3a 5 call 0x1004c96 //push 0x1004a3f as return site
1004c96 5 call 0x1004c9c //push 0x1004c9b as return site
1004c9c 1 pop esi //pop return address in esi
1004c9d 5 sub esi, 4474311
1004ca3 1 ret //return to 0x1004a3f

Figure 10.1: ASPack violation 1/3 (trace)

address mnemonic comment
1004002 call 0x100400a //push 0x1004007 as return
1004007 .byte{invalid} //invalid byte (cannot disassemble)
1004008 [...] //not disassembled
100400a pop ebp //pop return address in ebp
100400b inc ebp //increment ebp
100400c push ebp //push back the value
100400d ret //jump on 0x1004008

Figure 10.2: ASPack violation 2/3 (CFG)
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address mnemonic layer comment
10043a9 mov [ebp+0x3a8], eax 0 //Patch push value at 10043ba*
10043af popa 0 //restore initial program context
10043b0 jnz 0x10043ba 0 //enter last SM layer (payload)

Enter Layer 1
10043ba push 0x10011d7 1 //push the address of the entrypoint
10043bf ret 0 //use ret to jump on it
10011d7 [...] 1 //start executing payload

*(at runtime eax=10011d7 and ebp+0x3a8=10043bb)

Figure 10.3: ASPack violation 3/3 (trace)

Conclusion As suggested by the manual look at the results, most artifacts detected
are true positive. False positives for opaque predicates are mostly due to the program
structure making the other branch of a predicate to be infeasible. Results showed that
certain packers do use opaque predicates but really trivial ones unlike the ones developped
in O-LLVM.

Call/stack tampering is less employed as it is more difficult to craft such obfuscation.
Only, ACProtect, ASPack, Crypter and Yoda’s Crypter seem to use it on purpose.
Nevertheless, this experiment highlighted the fact that multiple packers are using ret
as tail transition to enter the original entrypoint. Thus, call/stack tampering is a really
good candidate to detect the transition to the payload. This detection is the key-point
of generic unpacker algorithm, thus using call/stack tampering analysis can be of a great
help for such task as the last violation will probably be the transition to the payload.

10.2 X-Tunnel: Sednit/APT28 proxy deobfuscation

10.2.1 Context & Samples
The use-case X-Tunnel is a ciphering proxy component aiming at exfiltrating data
from a machine not directly reachable from internet. This malware was used as part of
various targeted attack campains (APT). The group behind these attacks is named Sed-
nit [CCD16] but also APT28, Fancy Bear, Sofacy or Pawn Storm group. This group is
active since 2006 and mainly targets geopolitical entities. Among attacks alleged to this
group we can mention NATO [Tre14], EU institutions [ESE15], the White House [Tre15a],
the dutch team in charge of the MH17 crash investigations [Tre15b], the german parlia-
ments [von15], the french TV channel TV5 Monde [Paq15] and more recently the Amer-
ican Democratic National Committee (DNC) [Alp16]. As an appreciation of the group
sophistication, for the single 2015 year 6 zero-days (0-days) where used, 2 in Flash, 1 in
Office (RCE), 2 in Java and 1 in Windows LPE. This group also uses advanced malware
tools like Rootkits, USB Command-and-Control (C&C), bootkits dropped by their custom
exploit-kit and recently highly pervasive Mac OS X malware named Komplex [CHF16].
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Table 10.2: Samples infos

Sample #1 Sample #2 Sample #3
42DEE3[...] C637E0[...] 99B454[...]

Obfuscated No Yes Yes
Size 1.1 Mo 2.1 Mo 1.8 Mo
Date creation 25/06/2015 5h15m34 02/07/2015 9h42m44 02/11/2015 8h45m54
#functions 3039 3775 3488
#instructions 231907 505008 434143
Mean instr/fun ∼76 ∼134 ∼125
#imports 133 139 135

Samples This use-case is based on 3 X-Tunnel samples, kindly provided by Joan
Calvet formerly at ESET Montreal [CCD16] (I warmly thank him again). These three
samples have apparently been compiled at few months of difference. The particularity is
that the first sample dated of the 25/06/2015 is not obfuscated while the two others are.
The last sample was compiled the 02/11/2015 thus these three samples are if timestamp
are corrects, somewhat covering the evolution of the software on a 5 month period. The
main issue raised is:

RQ: Is there new functionalities in the obfuscated samples ?

Answering this question requires to be able to analyse the obfuscated binaries. Table
10.2 gives the basic information about the samples. As suggested by the results, the
number of instructions in obfuscated samples is almost twice as big as the original sample
while the number of imported functions remains almost constant.

Analysis context A quick code gazing reveals the presence of opaque predicates in the
code. Unlike previous case-studies, the analysis have to be performed statically for the
following reasons:

• as the malware is a network component, it requires to connect to the C&C server
(which we are definitely not eager to, with such attackers);

• as it listens on the network, all branching conditions to cover the program would
be network-event based thus unreliable and more hardly reproducible (which would
also require infected client to connect to xtunnel);

• X-Tunnel does not look to use any self-modification obfuscation or neaty tricks to
hamper the disassembly. Thus the whole disassembled code is available.

For these reasons running the analysis statically will be easier and will provide a full
coverage of the program. In addition, the opaque predicate is performed fully symbolically
(does not use runtime values) thus running the analysis statically does not change the
inner working of the analyse.
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Goal The goal of this analysis is to detect and remove all opaque predicates along with
their dead-code in order to find the potential new functionality afterward. This is a two
step process (1) identifying the obfuscated code and pruning it, (2) finding the potential
functionalities. We focus in this analysis on the first step which is a prerequisite for the
second. Thus, we need to find a way to simplify the CFG in order to make the second
step possible.

10.2.2 Approach & Analysis setup
Analysis setup This analysis will be static SE but working like a DSE analysis as
opaque predicates analysis is fully symbolic. As described hereafter, all the process will
be driven by Idasec that will submit all sub-traces to Binsec running in server mode.
The obfuscation seems to have been done on a per function basis so the analysis will
also be performed on a per function basis. Taking advantage of benchmarks previously
done, we will use k16 as the bound value for the bb-dse. The solver used is Z3 with a 6s
timeout.

Binsec From the Binsec perspective, the analysis is slightly different. Indeed in DSE
when reaching a conditional branches, one of the two branches is necessarily taken. Thus
solely the other branch need to be checked. In static SE both branches need to be checked
to find out if the predicate is opaque. Also, different from DSE, if both branch are unsat
we mark the predicate as likely-opaque since the unsatisfiability is necessarily due to
path constraints not satisfiable which mean the predicate is unreachable.

Idasec Most of the computation tasks will be driven by Idasec as it has the complete
view of the program and its CFG. The first thing performed is the enumeration of paths
leading to every conditional jump of the program. For a conditional jump to check, the
choice has been made to compute the shortest path from the function entry point as
a reference path. This path is then used to create an artificial execution trace sent to
Binsec for solving. The shortest path computation is performed by a classic dijkstra
algorithm performed on basic blocks. This allows to know for any instructions its depth
in the function. Idasec also performs a basic predicate synthesis to identify the predicate
used and also an unobfuscated reduced CFG extraction based functionality. The two are
described below. For convenience, the analysis in Idasec allows to perform the analysis
with different levels of granularity:

• on a predicate

• on a function

• one the whole program

Exploiting results Results are processed by Idasec which performs further compu-
tation to extract relevant information. These computations require the two following
components developped for that purpose:
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• Internal SMT representation A tiny SMT representation is embedded allowing
to perform computation on the generated formula. As the formula represents the
logic relation of a predicate it allows to perform semantic manipulation. It is used
to perform the dependancy analysis and to retrieve all the spurious instructions
involved in the predicate computation. The predicate synthesis also makes use of
this functionality.

• Internal CFG representation The CFG given by IDA is superficial and not
extendable. Thus, Idasec holds an internal representation providing all the infor-
mation about paths to a specific address. It also can provide a safe path to a specific
address ensuring no possible back edges within that path. Lastly, this CFG allows
to tag basic blocks and instructions if user defined information.

Post-analysis processing Idasec performs three post-analysis computations on re-
sults, (1) liveness propagation, (2) reduced CFG extraction and (3) predicate synthesis.
Here are some insight on the inner working of the different algorithms:

• Predicate “synthesis” This algorithm allows to retrieve the instructions involved
in the computation of a predicate and gives an higher level view of the predicate used
which allows to quickly identify OPs. We call spurious instructions all instructions
involved in the computation of an opaque predicate. Synthesis is improperly used
here as it does not use formal synthesis algorithm usually denoted by this term. This
algorithm works on the SMT representation of the predicate. For a conditional jump
it looks for the two parameters used in the comparison associated and recursively
replace them by their definition. Some normalization is also performed for instance
x× x is replace by x2. At the end of the recursion all register or memory cells are
replaced by placeholders (x, y, z etc) to obtain the generic predicate;

• Liveness propagation This analysis is used to mark basic blocks and instructions
with annotations namely alive, dead and spurious. This analysis uses OP results
to propagate from the entry point the liveness of basic blocks, marking them with
theirs status. For each function, it starts from the entry point and follows the CFG.
When reaching a good condition, it follows both branches, otherwise it follows only
the alive branch and remove the dead edge in the CFG. All unmarked blocks are
consequently tagged dead. Finally, all alive instructions in basic blocks are marked
alive except for spurious instructions which are marked spurious;

• Reduced CFG extraction This analysis aims at recovering a readable and unob-
fuscated CFG of a function. Using information computed by the liveness propaga-
tion, the CFG extraction algorithm remove all dead basic blocks of the CFG and all
edges pointing to them. After this operation, it remains only basic blocks contain-
ing legitimiate and spurious instructions. Then, the algorithm will strip spurious
instructions and concatenate within the same basic block all instructions having a
single predecessor. This operation is performed while not encountering an instruc-
tion with multiple successors. This works well as the liveness propagation will have
removed dead edges.
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10.2.3 Results
Execution time The analyses were performed on the whole program of the two ob-
fuscated samples. Table 10.3 reports the execution time. Less than two hour is clearly
acceptable for samples of this size. The predicate synthesis takes a non-negligible amount
of time but it was not especially designed to be efficient. The 10 predicates per second
should be put in perspective as it includes sub-path creation, solving for both left and
right branches and also network communications.

Table 10.3: Execution time

(in s) #preds DSE Synthesis Total pred/sec(avg)
C637 (#1) 34505 57m36 48m33 1h46m ∼10

(3456.00s) (2913.22s) (6369.29s)
99B4 (#2) 30147 50m59 40m54 1h31m ∼10

(3059.80s) (2454.9s) (5514.70s)

OP diversity Each sample presents a very low diversity of predicates used. Indeed
solely 7x2 − 1 6= x2 and 2

x2+1 6= y2 + 3 where found to be opaques. It is worth noting
that the later was new to our knowledge and has never been seen elsewhere. Table 10.4
sums up the distribution of the different predicates. The amount of predicates and their
distribution supports the idea that they were inserted automatically and chosen randomly.

Table 10.4: Opaque predicates variety

OP #1 OP #2
7y2 − 1 6= x2 2

x2+1 6= y2 + 3

C637 (#1) 6016 (49.02%) 6257 (50.98%)
99B4 (#2) 4618 (45.37%) 5560 (54.62%)

Detection results As the diversity of opaques predicates is very low, we are able to
determine, with quite a good precision, the amount of false negatives and false positives
based on the predicate synthesized. If a predicate matches one of the two OP and was
detected OK, then we considered it false negative (respectively false positive). Results
are given in Table 10.5. From one sample to the other results are similar except that
one of them yielded a timeout. The detection rate is satisfactory as false negatives only
represent 2.4% of all predicates but conversely 9.7 to 10.5% of false positive are wrongly
tagged opaque. We only test on path (the shortest) for each predicates. As consequence,
most false positives are due to wrong path the selection. An exemple is shown in Figure
10.4a where the shortest-path selected going through the xor ebx, ebx which makes the
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predicate cmp ebx, 0x7f to be always false. Also, we marked likely-opaque, predi-
cates for which both branch conditions evaluate to unsat. This is due to the high density
of opaque predicates and are mostly occuring when another OP is in the path predicate.
Indeed, even though the backward bound is only 16 it is frequent that the path to a
legitimate predicate goes through another opaque predicates that makes the path pred-
icate unsat. Figure 10.4b illustrates this issue where the jz is flagged opaque because
the shortest-path has select the green edge which is the dead branch of another opaque
predicate.

(a) False positive in C637

(b) Likely opaque in C637

Figure 10.4: Samples of false positives / Likely predicates

Table 10.5: Opaque predicates evaluation

#pred OK OP Likely To
OK FN OP FP OK OP

C637 (#1) 34505 17196 1046 11973 2968 1156 165 1
(49.8%) (3.0%) (34.7%) (8.6%) (3.4%) (0.4%)

99B4 (#2) 30147 16148 914 9790 2543 606 146 0
(53.7%) (3.0%) (32.5%) (8.4%) (2.0%) (0.5%)

likely: predicates were both branches were unsat

Dependency evaluation As seen above, a large k bound can lead to false positive
due to nested opaque predicates while in the meantime a low bound miss some predicates.
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An example is given in Figure 10.5 where a bound of 24 would have been required to
include all predicate dependencies. With k=16 we miss the imul ebx,ebx that would
have enforced enough the constraints to detect the predicate. Finding the right balance
is still an important issue, but results with 11311 OP detected against 808 false negative
tend to confirm that such low bound is enough. Across the two samples, the maximum
distance between a predicate and its variable definition where 230 for C637 and 148 for
99B4. Annexe C shows an example of predicates with a distance of 43 between variables
declaration and their usage. Still, the average computed on all the OPs yield an average
of 8.7. The results obtained are satisfactory in the way that they open the way to further
manual triage on doubtful predicates.

1-15
instrs

16-23
instrs

Figure 10.5: False negative in 99B4

Difference with O-LLVM The two obfuscated program structures present great
similarities with O-LLVM and it has undoubtedly been obfuscated using similar technolo-
gies. Yet, interesting differences are to be emphasized. Firstly, there is more interleaving
between the payload and the OPs computation. What appeared to be meaningful instruc-
tion is often encountered within the predicate computation. Secondly, while O-LLVM
opaque predicates are really local to the basic blocks there are here some code sharing be-
tween predicates as shown in Figure 10.5 where ebx is used in two opaque predicates. As
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a consequence, predicates are not fully independent from one another. In the same vein,
this obfuscator uses local function variables to store temporary results at the begining of
the function for later usage in opaque predicates. This has in consequence to increase the
depth of the dependance chain and to complexify the detection.

Obfuscation distribution Surprisingly, not all functions are obfuscated. Conversely,
only few functions appeared to be obfuscated. Figure 10.6 shows the distribution of
functions considering their level of obfuscation. For each function the level of obfuscation
is the percentage of opaque predicates among all conditional jumps. Considering that the
obfuscation is generally used to hide the critical parts of the program it can be helpful
to focus on these functions. X-Tunnel include various libraries statically linked and
most notably OpenSSL. Thus authors might have considered useless to obfuscated these
functions.

%pred obfu �C637 (#1) �99B4 (#2)
0-10% 3060 2906
10-20% 4 5
20-50% 0 0
50-60% 5 7
60-70% 39 23
70-80% 110 67
80-90% 175 131
90-100% 384 351

distribution of the percentage of obfuscation per function

(a) Distribution of function obfuscation level
(b) Graph distribution of obfuscation

Figure 10.6: Fonction obfuscation

Code simplification After detecting OPs, the next step is to simplify the code by
removing dead basic blocks and spurious instructions. Table 10.6 shows the number
of instructions classified based on their status. Dead code alone, represents 1/4 of all
the program instructions. Computing the difference with the original non-obfuscated
program shows a very low difference. Therefore, the simplification pass allowed to retrieve
a program which is roughly the size of the original one. The difference is highly likely to
be due to the false negatives or missed spurious instructions.

Reduced CFG Extraction The extraction of the reduced CFG can be made on
purpose for a chosen function. It uses the liveness data to extract the unobfuscated
CFG. Figure 10.7 shows different original CFG, with their tagged version (red:dead, or-
ange:spurious) and extracted version. The extracted versions are not executable and still
contain noise and thus some oddities in the flow of the CFG. Although, it makes possible
reading the CFG while it was simply not possible on the obfuscated version.

141



Chapter 10. Real-World case studies

(a) Function #1 CFG (b) CFG tagged (c) CFG extracted

(d) Function #2 CFG
(e) CFG tagged (f) CFG extracted

(g) Function #3 CFG (h) CFG tagged (i) CFG extracted

(j) Function #4 CFG (k) CFG tagged (l) CFG extracted

Figure 10.7: Examples of CFG extraction performed on 4 functions142
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Table 10.6: Code simplification results

#instr #alive #dead #spurious alive-(42DE insts)
(231,907)

C637 (#1) 507,206 279,483 121,794 103,731 47,576
(55%) (24%) (20%)

99B4 (#2) 436,598 241,177 113.764 79,202 9,270
(55%) (26%) (18%)

10.2.4 Conclusion & Futur improvment
Results conclusion This obfuscation is relatively sophisticated compared with existing
opaque predicates found ever since. It successfully manages to spread the data dependency
accross a function so that some predicates cannot be solved locally at the basic block
level. Hopefully, this is not a general practice across predicates so that the bb-dse works
very well in the general case. The main issue of the obfuscation is the low diversity of
opaque predicates in the way that some pattern matching can come in relay of symbolic
approaches to classify a posteriori false positives and false negatives. Finally, this use-case
emphasizes the complexity of choosing the appropriate k bound to maximize the detection
and to limitate the false positives/negatives rates.

Possible improvements Various improvements are possible in order to reduce false
positives and false negatives. The first, is for a given predicate to compute the opacity
with more k-paths which would reduce the risk of having selected the wrong one. The
second, would be to compute on the fly the CFG simplification to remove dead edges
and basic blocks as soon as possible. This would have in effect to improve the shortest
path computation for a more accurate one. Last, an idea is to compute a safe path
ensuring it does not go through an already detected opaque predicate or function call.
Last, performing a taint on data would enable to detect missing data dependencies while
keeping the scalability of the backward-bounded approach without being hampered by
path constraints making formulas unsat for both branches.

Towarding finding new functionalities This case-study, showed how to locate highly
obfuscated functions (more likely of interest) and how to extract a readable CFG version
of them. In order to answer the initial question, some similarity algorithms should be
computed between the non-obfuscated and the extracted version. This would help to
find the differences and potential new functionalities. The initial question is “is there
new functionalities in obfuscated samples ?”. We do not give a final answer but the low
difference of instructions between the non-obfuscated and the extracted versions supports
the idea that it is very unlikely that new functionalities would have been added in the
obfuscated samples.
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Chapter 11

Conclusion

We have studied in this thesis the application of different formal methods to address
obfuscation problematics. The focus has been given to dynamic symbolic execution ap-
plied to two unfeasibility based obfuscation, namely opaque predicates and call/stack
tampering. In the scope of this study we formalized and developped two DSE variants
aiming to scale on obfuscated codes. In support we designed different optimisations.
This work has been validated on two significant case studies especially packers and the
X-Tunnel malware.

11.1 Contributions summary

Flexible Dynamic Symbolic Execution The main contribution of this thesis is the
formalization, implementation and testing of an enhanced path predicate computation
algorithm integrating concretization and symbolization in a flexible way. All that was
facilitated by the conception of a meta-language CSml allowing to specify a wide range
of different policies and thus behavior for concrete data. This modularity did permit to
benchmark various behaviors highlighting the difference between them and emphasizing
the impact of concretization and symbolization on the solving time of the path predi-
cate. To further reduce the solving time different formula optimizations were formalized
and developped of which the most notable is the STMC-RoW. Various experiments and
benchmarks showed the usefulness of these optimizations to scale on larger formulas.

bb-dse Another contribution to the dynamic symbolic execution field of research is
the backward-bounded DSE algorithm. This algorithm is scalable, robust and precise for
solving infeasibility questions brought by obfuscation. This thesis has demonstrated the
benefit of the method for several realistic kinds of obfuscations, such as opaque predicates
and call stack tampering. While this algorithm does not supersede existing forward DSE
approaches, it complements them by addressing infeasibility questions.

These two algorithms are the answer to “How to make analysis algorithms scaling on
real-world obfuscated malwares” stated in the introduction.
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Obfuscation detection Deobfuscation is the cornerstone of my thesis subject and was
addressed by focusing on two obfuscations, opaque predicates and call/stack tampering.
We proposed for each one, a complete taxonomy along with a detection method based
on our DSE algorithms. This study provides a throughout study of opaque predicates
and call/stack tampering and shows how the bb-dse algorithm has successfully been
used on packers and on the real-world malware X-Tunnel. It is worth nothin that
call/stack tampering obfuscation have rarely been addressed in state-of-the art research.
Such analyses, also unveiled interested properties. For instance it showed that call/stack
tampering was able to detect the tail transition from the packer to the payload for packers
using ret for making this jump.

Sparse disassembly Beyond simple detection, as one of the main contribution, my
thesis formalizes a new disassembly algorithm sparse disasembly lifting obfuscation infor-
mation computed by DSE in the disassembly process. It empower a dynamic disassembly
with a static disassembly guided and improved with obfuscation related data. The few
benchmarks performed, yielded promising results. This work paves the way for robust,
correct and almost complete semantic-aware disassembly tools for obfuscated binaries.

Experimental Validation The scalability and the robustness of these algorithms and
methods have been validated on commercial packers. Moreover, these techniques found
some application beyond the reverse-engineering and the binary analysis field. Indeed,
a forward/backward combination approach detailed in 9.4 was successfully used for de-
tecting infeasible test requirements at source-level for software testing purposes. The last
validation of my thesis work was performed on the X-Tunnel malware. It showed a
concrete example replying to the initial question: “How to locate obfuscation, and how
to take it off to make the code more readable and malleable for the reverse-engineer ?”.
From the localization to the CFG extraction, all steps were performed to remove the ob-
fuscation and to make the CFG usable for the reverse-engineer. Besides that, it showed
that algorithms theorized in Part II are applicable and successful on governement-grade
malware.

11.2 Community contributions
A key idea of this thesis, was to make the algorithm and detection method usable

in practice for the reverse-engineering community in order to bridge the gap between
academic research and industrial problems. For that, all algorithms were implemented in
open-source software namely Pinsec, Binsec/se and Idasec. These three tools provide
respectively a dynamic instrumentation tool to gather concrete behaviors of malware, a
tool to perform symbolic execution and an IDA plugin allowing to use all these algorithms
in a user-friendly manner.

These work and implementation were presented in non-acadamic conferences especially
RMLL/Sec [BD16] and BlackHat Europe 2016 in London [DB16a]. The aim of such
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initiatives was to fill in the gap between academic research and the reverse-engineering
community by providing them both practical approaches and functional tools.

11.3 Perspectives
This thesis opens the way to many applications and further improvements. From a

purely technical point of view we can improve dynamic analysis by adding more anti-
debug or addressing more obfuscation schemes but the next step of the work made in this
thesis would be to integrate the results of analyses with morphological analysis algorithms
developped at the LORIA aiming at providing better and more accurate signatures for
malwares.

Formal methods and more especially symbolic approaches provided very good results
with dynamic symbolic execution, but another promising usage of symbolic approaches for
software deobfuscation is instruction synthesis. This technique showed very good results
for optimization matters and very few works have focused on using such approach for
deobfuscation.

Over the past few years, the interest in automated binary analysis grew tremendously
with the appearance of challenges like the Cyber Grand Challenge [DAR16] (CGC) and
consequently some baseline benchmarks for binary analysis tools [Gui16]. The CGC fi-
nanced by the DARPA greatly intensified the research on various aspect of binary analysis
like dynamic instrumentation, binary translation, abstract interpretation and symbolic
execution. My thesis humbly contributes on several of these aspects and showed that
formal methods can successfully be used for obfuscation related problematics. Especially
it tries to bring semantic-aware analyses to the field of malware analysis. Hopefully, this
thesis will guide and incitate futur researches aiming at building more accurate malware
detection algorithms.
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Acronyms

ABI Application Binary Interface. i, 54,
151, Glossary: Application Binary In-
terface

ACSL ANSI/ISO C Specification Language.
i, 125, 151, Glossary: ANSI/ISO C
Specification Language

ANR Agence Nationale de la Recherche. i,
4, 151, Glossary: Agence Nationale de
la Recherche

API Application Programming Interface. i,
151, Glossary: Application Program-
ming Interface

APT Advanced Persistent Threat. i, 134,
151, Glossary: Advanced Persistent Threat

AST Abstract Syntax Tree. i, 125

C&C Command-and-Control. i, 134, 135,
151, Glossary: Command-and-Control

CFG Control Flow Graph. i, 6, 11, 12, 151,
Glossary: Control Flow Graph

CGC Cyber Grand Challenge. i, 151, Glos-
sary: Cyber Grand Challenge

CST Call/Stack Tampering. i

DARPA Defense Advanced Research Projects
Agency. i, 149

DBA Dynamic Bitvector Automata. i, xxi,
151, Glossary: Dynamic Bitvector Au-
tomata

DBI Dynamic Binary Instrumentation. i,
68, 151, Glossary: Dynamic Binary
Instrumentation

DNC Democratic National Committee. i,
134, 151, Glossary: Democratic Na-
tional Committee

DPLL Davis–Putnam–Logemann–Loveland.
i, 73, 151, Glossary: Davis–Putnam–Log-
emann–Loveland

DRM Digital Right Management. i, 11,
151, Glossary: Digital Right Manage-
ment

LHS Laboratoire de Haute Sécurité. i, 4,
151, Glossary: Laboratoire de Haute
Sécurité

LLVM Low-Level Virtual Machine. i, 68,
151, Glossary: Low-Level Virtual Ma-
chine

LPE Local Privilege Escalation. i, 134, 151,
Glossary: Local Privilege Escalation

LTR left-to-right. i, 53, 151, Glossary: left-
to-right

MBA Mixed-Boolean Arithmetic. i, 13, 151,
Glossary: Mixed-Boolean Arithmetic

NATO North Atlantic Treaty Organization.
i, 134

OP Opaque Predicates. i, 101

151



Acronyms

OTS Off-The-Shelf. i, 25, 152, Glossary:
Off-The-Shelf

PLC Programmable Logic Controller. i, 3,
152, Glossary: Programmable Logic
Controller

QF_ABV Qantifier-Free Array and Bitvec-
tors. i, 92

QF_BV Qantifier-Free Bitvectors. i, 92

RCE Remote Code Execution. i, 134

ROP Return-Oriented Programming. i, 19,
152, Glossary: Return-Oriented Pro-
gramming

RTL right-to-left. i, 53, 152, Glossary: right-
to-left

SE Symbolic Execution. i, 21, 25

SMT Satisfiability Modulo Theories. i, 21,
73, 137, 152, Glossary: Satisfiability
Modulo Theories

TCG Tiny Code Generator. i, 68, 152,
Glossary: Tiny Code Generator

TSC Time Stamp Counter. i, 55, 152, Glos-
sary: Time Stamp Counter

UaF Use-After-Free. i, 7, 122, 152, Glos-
sary: Use-After-Free

VPC Virtual Private Counter. i, 18
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Glossary

X-Tunnel Proxy component aiming at connecting machines not primarly connect on
internet to access it. Used as part of targeted attacks of APT28, it is use to exfiltrate
data by ciphered channels. i

Advanced Persistent Threat represent targeted attacks against certain organization
or person performed as a long term process. Such attacks usually involve a whole
ecosystem of malware, infrastructure and vulnerability exploits.. i, 151

Agence Nationale de la Recherche French organization for academic research. i, 4,
151

ANSI/ISO C Specification Language is a behavioral specification language for C
programs. It allows to express a wide range of properties and is defined as a formal
language allowing to perform various analyzes on it. i, 125, 151

anti-debug group all the techniques aiming at preventing the debugging of the software.
It can be checking if debugged, attaching to itself etc. i, 14

anti-tampering group all the techniques aiming at preventing the static or dynamic
modification of the software. i, 14, 18

anti-VM group all the techniques aiming at preventing the software of being run in a
virtual machine (that could indicate being analyzed). i, 14

Application Binary Interface defines the interface between two modules, within the
kernel or between use-space programs and kernel. i, 54, 151

Application Programming Interface represent a set of routines definitions, protocols
or formats used to facilitate the interaction between two different piece of software.
i, 151

APT28 Nickname given by FireEye to identify a criminal group acting since 2007. The
same group is identified under other nickname like “Sofacy”, “Sednit” or “Pawn
Storm”. i, 8, 134

bootkit Malicious, software which task is to infect the boot process by interleaving the
transition from boot process to the system boot with its own startup. i, 3, 134
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bots A bot, is a machine that runs autonomously under the control of another machine
or human. It is characterized by its grouping in a network where all individual nodes
perform the same taks. i, 3

Command-and-Control is a remote machine on which an infected machine connects
to receive commands and instructions. i, 134, 151

Control Flow Graph Graph structure representing the program where each node is
basic block and each edges are the possible flow from a block to another. i, 6, 151

Cyber Grand Challenge is a challenge created by DARPA to develop fully-automated
defense reasoning systems that can discover prove and correct software flaws. De-
signed as a challenge it involved various teams competing against each other in a
“capture the flag” game. i, 151

Davis–Putnam–Logemann–Loveland is a backtracking-based search algorithm for
deciding the satisfiability of propositional logic formula. i, 151

Democratic National Committee is the formal governing body of the United States
Democratic Party. i, 134, 151

Digital Right Management General term grouping all access controls techniques en-
forcing the access to a resource to a user. i, 11, 151

droppers A dropper, is a malicious software used to drop a file on the machine it is
running on. It is usually employed as a first stage infection vector to drop another
malicious executable that fits the infected machine. i, 3

Dynamic Binary Instrumentation Dynamic Analysis aiming at gather all runtimes
values of the program. i, 68, 151

Dynamic Bitvector Automata intermediate representation used internally in Binsec.
i, xxi, 151

exploit-kit is a software kit designed to run on web servers. Clients visiting the website
would be scanned in order to find a vulnerable browser or plugin in order to infect
the machine. i, 134

Frama-C “Framework d’analyse de C” is an open-source platform for C analysis. Work-
ing on the CIL representation it embeds by default a value analysis by abstract
interpretation and weakest-precondition calculus algorithm. i, 4, 8, 125

Laboratoire de Haute Sécurité Inria laboratories dedicated to computer security re-
search. i, 4, 151

left-to-right designate the way parameters are transmitted by the calling convention. i,
53, 151
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Local Privilege Escalation is the mean by which a non-priviledged user gain priv-
iledged access to a machine. i, 151

Low-Level Virtual Machine is a tool-chain providing an intermediate representation
LLVM-IR allowing to develop compiler front-ends and back-ends. i, 151

Malware Software developped with the intent to harm a computer system by altering
its availability, confidentiality or integrity. i, 3

Mixed-Boolean Arithmetic obfuscation used to obfuscated constant values, or simple
condition into linear arithmetic operations. i, 13, 151

Off-The-Shelf idiomatic expression to represent an object (or software) ready to use. i,
25, 152

packer A packer is a program aiming at embedding a program in another. The goal
is to compress the packed binary or to protect its content from analysis. Used for
intellectual property such programs are also used to hide malwares. i, 8, 18

polymorphism generic term, grouping all software changing of form between two exe-
cution or during the execution. It includes self-modification. i, 15, 18

Programmable Logic Controller Industrial digital computer used to control the man-
ufacturing or the operation of physical systems (robots, assembly lines etc). i, 3,
152

race condition specific event or output dependent on the sequencing or timing of un-
controllable events. i, xxx

ransomware specific malware ciphering files of the infected machine and requesting the
payment of a ransom to decipher files. i, 3

Return-Oriented Programming exploitation technique aiming at bypass not executable
stack by using ret instructions of the different functions to encode a shellcode or a
specific trampoline. i, 152

right-to-left designate the way parameters are transmitted by the calling convention. i,
53, 152

rootkits Malicious, software running with the kernel permissions. i, 3

Satisfiability Modulo Theories is a decision problem for logical formulas with respect
to different theories expressed in first-order logic. i, 21, 152

secure trigger protection technique, aiming at revealing or deciphering the payload of
a software only under very specific settings. The setting or environment triggering
the deciphering is designed to be hardly guessed and is thus secure. i, 15
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Sednit Nickname given by ESET to identify the “Sofacy”, “APT28”, “Fancy Bear” crim-
inal group. i, 8, 134

SMTLIB2 standard format used in SMT to express formulas in the any theories. Built
to be modular it allows a standard input format across solvers. i, 73, 75

Time Stamp Counter is a x86 register holding the count of cycles since the begining
of the program.. i, 152

Tiny Code Generator is a code generator transforming native machine instruction into
TCG instructions in order to be emulated in a portable and architecture independent
way. i, 152

Use-After-Free vulnerability occuring when using a resource that has previously been
freed from the memory. This improper memory access allows in some cases the
control on the program. i, 7, 122, 152

watermarking mean of hiding information in another medium. It is used in software
protection to hide software keys etc. i, 11

zero-day A zero-day vulnerability is a vulnerability that has never been publicly dis-
closed ever since. i, 3, 134
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Appendix A

Anti-Debug examples

int check_vbox_regkey () {
HKEY regkey ;
string key_s = " SOFTWARE \\ Oracle \\ VirtualBox Guest Additions ";
LONG ret = RegOpenKeyEx ( HKEY_LOCAL_MACHINE , key_s , 0, KEY_READ , &

regkey );
if (ret == ERROR_SUCCESS ) {

RegCloseKey ( regkey );
return true;

}
else

return false;
}

Listing A.1: Check VirtualBox registry entry

int check_vbox_process () {
int found = false;
PROCESSENTRY32 pentry ;

HANDLE snapshot = CreateToolhelp32Snapshot ( TH32CS_SNAPPROCESS , 0 );

if (! Process32First (snapshot , & pentry )) {
CloseHandle ( snapshot );
return found;

}

do {
if ( lstrcmpi ( pentry .szExeFile , " vboxservice .exe") == 0) {

found = true;
}

} while ( Process32Next (snapshot , & pentry ));
return found;

}

Listing A.2: Check the presence of a VirtualBox process
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Appendix A. Anti-Debug examples

unsigned long long rdtsc () {
unsigned eax , edx;
__asm__ volatile ("rdtsc" : "=a" (eax), "=d" (edx));
return (( unsigned long long)eax) | ((( unsigned long long)edx) << 32);

}

int check_rdtsc () {
int i;
unsigned long long avg , ret = 0;
for (i = 0; i < 10; i++) {

ret = rdtsc ();
avg = avg + (rdtsc () - ret);
Sleep (500);

}
avg = avg / 10;
return (avg < 750 && avg > 0) ? FALSE : TRUE;

}

Listing A.3: Check the RDTSC average difference value
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Appendix B

Wave-model difference

A throuhghout study of the different self-modification models has been made in
2015 [Uga+15]. This annexe aim at emphasizing the difference between Codisasm [Bon+15]
and Pinsec [Dav+16b] differences. Let’s consider N the current layer of self-modification.
The self-modification detected is performed by tagging memory cells with a given layer
number. If that memory cells is later executed the current layer level N will switch to
this number if strictly superior than the previous N . The difference between the two
models lays in the way to propagate the self-modification aka the marking of memory
cells. On an instruction writing in memory Codisasm will use the global current layer
counter N while Pinsec will use the value of the instruction itself denoted in where i is
the instruction and n the layer associated to it. In this model all instruction are marked
with layer 0 by default. Thus, an instruction is only marked with n + 1 if it is written
by an instruction of level n. The figure B.1 shows graphicaly the difference between the
two models. Both modeling will update theirs global counter to N = 1 when entering
F#1. Meanwhile the execution flow might return the original code and while Pinsec
will consider F#2 as another chunk of the layer 1 Codisasm will consider it to be another
layer.

Layer:0

Layer:1

Codisasm L:2 | Pinsec L:1

Trace

entrypoint write n=1

pinsec write n=1
codisasm write n=2 

write 
n=2

Layer n=0 Layer n=1 Layer n=2

F#1

F#2

Codisasm L:2 | Pinsec L:2

Figure B.1: Layer transition model
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Appendix B. Wave-model difference

Reflecting to the formalization and modeling of [Uga+15] Codisasm address perfectly
single frame packer, linear(forward) with tail transition in full-code unpacking mode, but
consider any frame sub-division as layers.
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Appendix C

X-Tunnel dependancy opaque predicate

44
instrs

Figure C.1: 44 instructions depth, dependency
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Résumé
L’analyse de codes malveillants est un domaine de recherche en pleine expansion de

par la criticité des infrastructures touchées et les coûts impliqués de plus en plus élevés.
Ces logiciels utilisent fréquemment différentes techniques d’évasion visant à limiter la
détection et ralentir les analyses. Parmi celles-ci, l’obfuscation permet de cacher le com-
portement réel d’un programme. Cette thèse étudie l’utilité de l’Exécution Symbolique
Dynamique (DSE) pour la rétro-ingénierie. Tout d’abord, nous proposons deux variantes
du DSE plus adaptées aux codes protégés. La première est une redéfinition générique de
la phase de calcul de prédicat de chemin basée sur une manipulation flexible des concréti-
sations et symbolisations tandis que la deuxième se base sur un algorithme d’exécution
symbolique arrière borné. Ensuite, nous proposons différentes combinaisons avec d’autres
techniques d’analyse statique afin de tirer le meilleur profit de ces algorithmes. Enfin
tout ces algorithmes ont été implémentés dans différents outils, Binsec/se, Pinsec et
Idasec, puis testés sur différents codes malveillants et packers. Ils ont permis de détecter
et contourner avec succès les obfuscations ciblées dans des cas d’utilisations réels tel que
X-Tunnel du groupe APT28/Sednit.

Mots-clés: Code malveillants, Désobfuscation, Méthodes formelles, Exécution Symbol-
ique, Rétro-ingénierie.

Abstract
Malware analysis is a growing research field due to the criticity and variety of assets

targeted as well as the increasing implied costs. These softwares frequently use evasion
tricks aiming at hindering detection and analysis techniques. Among these, obfuscation
intent to hide the program behavior. This thesis studies the potential of Dynamic Sym-
bolic Execution (DSE) for reverse-engineering. First, we propose two variants of DSE
algorithms adapted and designed to fit on protected codes. The first is a flexible defini-
tion of the DSE path predicate computation based on concretization and symbolization.
The second is based on the definition of a backward-bounded symbolic execution algo-
rithm. Then, we show how to combine these techniques with static analysis in order to
get the best of them. Finally, these algorithms have been implemented in different tools
Binsec/se, Pinsec and Idasec interacting alltogether and tested on several malicious
codes and commercial packers. Especially, they have been successfully used to circum-
vent and remove the obfuscation targeted in real-world malwares like X-Tunnel from
the famous APT28/Sednit group.

Keywords: Malware, Deobfuscation, Formal Methods, Symbolic Execution, Reverse-
Engineering.
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