list

Ceatech

Formal Approaches for Automatic
Deobfuscation and Reverse-engineering
of Protected Codes

PhD Defense - Robin David
January 6th, 2017

Start

Agenda of the presentation

Introduction

Dynamic Symbolic Execution extensions
and variants

Implementation: Binsec

Combination of analyses

Case-studies

©
2
©
@
&
&

Conclusion

Introduction
®@O0OO0O00O0

Context: Malware analysis

What is a malware and why does it matter to analyse them ?

Malware is a generic term grouping all softwares

developed with the intention to harm and to
threaten computer systems or their users.

Some numbers:

Average cost of a breach'

(almost always involving malware) 4M$
Annual cost of cybercrime?3 > 400B$
New malware sample detected daily*> > 230K

Robin David - Phd defense, January 6th, 2017

Context: Malware more & more critical

BEE o son
NEWS

Home | Video = World = UK | Business

Travel | More -~ Search Q

Enteriainment & Arts | Health =~ WorldNews TV =~ More ~

Technology

Stuxnet worm 'targeted high-value Iranian

assets’

By Jonathan Fildes
Technology reporter, BBC News

(@ 23 September 2010 | Technalogy

One of the most sophisticated
pieces of malware ever detected
was probably targeting "high
value” infrastructure in Iran,
experts have told the BBC.

Stuxnet's complexity suggests it could
only have been writien by a "nation
state”, some researchers have
claimed.

It is believed to be the first-known

B E o Sign in News Sport Weather Shop Earth Travel More

NEWS

Home @ Video @ World | UK | Business | Tech Science = Magazine = Entertainment & Arts

Technology

Flame: Massive cyber-attack discovered,
researchers say

By Dave Lee
Technology reporter, BBC News

@ 28 May 2012 | Technology «§ Share

A complex targeted cyber-attack
that collected private data from
countries such as Israel and Iran
has been uncovered, researchers
have said.

Russian security firm Kaspersky Labs
told the BBC they believed the
malware, known as Flame, had been
operating since August 2010.

The company said it believed the

- Search Q

Health =~ World News TV | More ~

Context: Malware more & more critical

I
o Sign in News Sport Weather Shop Earth Travel More - Search Q
BE n Sign in News Sport Weather Shop Earth Trave BE

NEWS

Home | Video World = UK | Business | Tech | Science = Magazine | Enteriainment |

Home | Video | World UK | Business Tech Science | Magazine Entertainment & Arts Health =~ World News TV | More ~

Technology

Tarhnalnog

we Security Three US hospitals hit by ransomware

News, views, and insight from the ESET security community

© 23 March 2016 | Technology «§ Share

All Posts Latest Research How To Mulimedia ~ Papers ~ Our Experts

BlackEnergy trojan strikes again: Attacks
Ukrainian electric power industry

BY ROBERT LIPOVSKY AND ANTON CHEREPANOV POSTED 4 JAN 2016 - 12:49PM

CYBERCRIVE

The IT systems of three US hospitals have been infected with ransomware,
which encrypts vital files and demands money to unlock them.

|_The company said it believed the

Binary analysis

Specificities inherent to binary analysis

UL\ IaEIaZ@ll Because source code generally not available on malware
Rule of the game (w.r.t. source level)

e compiler independent (and potential issues)
e language independent (+ source free)
e no source code

Handicap / Problematic

e nodistinction between code & data (jump eax)
e only bitvector arithmetic
e memory not “typed” (one flat array)

Robin David - Phd defense, January 6th

Binary analysis: Example Switch

What is inside a blob of binary 7 [Reps10] [Meng16]

Sections Code Assembly
text (Functions) — L]
| !
main —_— |
[--]
66:90:66:90 Lnknown El
NN El
__libc_csu_init -]
wnknown -
_F —libc_csu_fini -
push ebx
fini g —term_proc ... sub esp, 8
. ; 11 t_pcl..]
rodata fp_hw, _I0_stdin_used | | "0 P -0l 1517
val%d\n add esp, 8
01 1B 03 3B 28 00 00 00 04 00 00 00 54 FD FF| switchjump table pop ebx
.eh_frame_hdr retn
m code m dead bytes m global csts m strings m pointers = other

Robin David - Phd defense, January 6th

Disassembly process

The three different steps to get through in order to disassemble a program

Code Non-code bytes

discoverg | e
(OkO. Decod]ng o

opcodes) Instruction overlapping
CFG .
reconstruction [ndrectcomrotfiow
(aka. Building the graph, Non-returning functions
nodes & edges)
CFG Function code sharing
_ pOF’[I’[IOOIﬂg Non-contiguous function
(aka. Finding functions, | T
bounds etc) Tail calls

Robin David - Phd defense, January 6th, 2017

Malware now uses =ale
other tricks to their intents

How to find and to remove obfuscation?

How to differentiate the cat from the dogs ?

Robin David - Phd defense, January 6th

Obfuscation Techniques (Some)

What is obfuscation ? What are the different kinds of obfuscation ? [Collberg97] [Barak12]

Obfuscation: Any means aiming at sIowmg—down the analysis process for a
human or an automated algorithm.

Target Against
Data | Static Dynamic
CFG flattening > >
Jump encoding ° °
(direct — indirect/computed)
Opaque predicates * *
VM (Virtual-Machines) ® b b o
Polymorphism ® ® A
(self-modification resource ciphering)
Call stack tampering ® ®
Anti-debug / Anti-tampering ° ° =
Signal / Exception L J

Robin David - Phd defense, January 6th

Opaque predicates

What is opaque predicate, and what is its purpose ?

eg: 7y?-1#Xx°

O Definition: Predicate always

evaluating to true (resp false) (for any value of x, y in modular
(but for which this property is difficult arithmetic)
to deduce)
J
O Can be based on: mov eax, ds:X

mov ecx, ds:Y

e Arithmetic imul ecx, ecx

e Data-structure imul ecx, 7
e Pointer sub ecx, 1
e Concurrency imul eax, eax
e Environment cmp ecx, eax

jz <dead_addr>

O Corollary, dead branch allows to:
e Grow the code (artificially)

e Drown the genuine code

Robin David - Phd defense, January 6th

Call stack tampering

What is a call stack violation and its implication for analysis ?

QO Definition: Alter the standard —“

compilation scheme of a call 30483d1 call +5
and retinstructions e D

O corollary: T T
e Real ret target hidden and 80483da push edx
returnsite potentially not code =~ T TTooTTToTTT oo mmm e m e

80483db ret
e Impede the recovery of control 80483dc | .byte{invalid}
flowedges somoomooomoes FoTtoTooomoommoooooomooooo

80483de Loool

e Impede the high-level function
recovery

Robin David - Phd defense, January 6th

General Goal & Challenges

What are the objectives of this thesis and the research challenges it implies ?

e Analysis of obfuscated binaries and malware

e Recovering a high-level view of the program

e Locating and removing obfuscation if any

e raising the difficulty of program obfuscation

e improving malware comprehension
(not necessarily detection)

Challenges

e Binary analysis

e Scalability

e Robustness w.r.t obfuscation

Robin David - Phd defense, January 6th, 2017

Deobfuscation

e Revert the transformation (often impossible)
e Simplify the code to facilitate later analysis

= best effort approach (undecidable problems)

Existing Analysis Techniques

5 syntactic

N Fuzzin
semantic T ===--- uzzing

Abstract Instrumentation
Interpretation o Debugging

Model Checking
dynamic
analysis

WP
A

static
analysis

A

symbolic
analysis

Robin David - Phd defense, January 6th, 2017

Existing Analysis Techniques

5 syntactic

N Fuzzin
semantic T ===--- uzzing

Abstract Instrumentation
Interpretation o Debugging

Model Checking
dynamic
analysis

WP
A

static
analysis

A

symbolic
analysis

Robin David - Phd defense, January 6th, 2017

Existing Analysis Techniques

Why not syntactic analysis ?
X Obfuscation usually alter the syntax o-
=> But semantic is preserved

5 syntactic

semantic

Abstract
Interpretation

Model Checking
Wi

static
analysis

symbolic
analysis

Fuzzing

Instrumentation

Debugging

dynamic
analysis

Robin David - Phd defense, January 6th, 2017

Existing Analysis Techniques

Why not abstract interpretation ?
X hindered by SMC and tricks
against static analysis

=> DSE takes advantage of dynamic

?

5 syntactic

S Fuzzin
semantic @ T e==—-=--— - &

Abstract Instrumentation
Interpretation o Debugging
Model Checking

WP

static dynamic
analysis analysis

symbolic
analysis

Robin David - Phd defense, January 6th, 2017

Existing Analysis Techniques

Why not dynamic analysis ?
% Only cover on path
=> DSE can find new paths

5 syntactic

semantic

Abstract
Interpretation

Model Checking
Wi

static dynamic
analysis analysis

symbolic
analysis

Robin David - Phd defense, January 6th, 2017

State of the Technique in disassembly

The different disassembly approaches and their shortcomings and strength

e Correct: only genuine -~
(executable) instructions are ‘.
disassembled

e Complete: all genuine
instructions are disassembled '~y

Standard approaches: (7

Robin David - Phd defense, January 6th

State of the Technique in disassembly

The different disassembly approaches and their shortcomings and strength

e Correct: only genuine
(executable) instructions are
disassembled

e Complete: all genuine
instructions are disassembled

Standard approaches:
QO static disassembly

scale °
robust (obfuscation) °
correct °

complete (coverage) / :’t

dynamic jump - -

Robin David - Phd defense, January 6th

State of the Technique in disassembly

The different disassembly approaches and their shortcomings and strength

e Correct: only genuine
(executable) instructions are
disassembled

e Complete: all genuine
instructions are disassembled

Standard approaches:
QO static disassembly

O dynamic disassembly

scale ° °
robust (obfuscation) ° °
correct o °

complete (coverage) 4 :‘, (;o_‘,

dynamic jump - - - - % input dependent

Robin David - Phd defense, January 6th

State of the Technique in disassembly

The different disassembly approaches and their shortcomings and strength

e Correct: only genuine
(executable) instructions are
disassembled

e Complete: all genuine
instructions are disassembled

Standard approaches:

QO static disassembly
O dynamic disassembly

scale °
robust (obfuscation) °
correct ° ° ° i coverage +
))) : obfuscation infos
complete (coverage)) red ro- .
I T -

dynamic jump - - - - % input dependent

Robin David - Phd defense, January 6th

Symbolic Execution

Definition and how it works in practice ? [King76]

Mean of executing a program using symbolic values (logical
symbols) rather than real values (bitvectors) in order to obtain an
in-out relationship of a path.

How to reach “OK"” ?

O

Source Code (C) Formula:
int f(int a, int b) { CY}a<1o a<10Aa>b
if (a < 10) {
if (a > b) {
printf (“0OK”); é a>b
) Solution:
- é a=5, b=1
) print(“0K”) (using SMT solvers)

Robin David - Phd defense, January 6th

Dynamic Symbollc Execution (aka concolic)

What is dynamic symbolic execution and advantages? [Godefroid05]

O Main properties:
e works on a dynamically generated path

e can take advantage of runtime values [concretization]

path sure to be feasible [unlike static]
can generate new inputs [unlike dynamic]
thwart basic tricks [code-overlapping, SMC, etc]
easier than static semantic analysis

o nextinstruction always known

o loops unrolled

Robin David - Phd defense, January 6th

DSE Path Coverage: Switch example

Extending the disassembly by covering new paths push ebp
mov ebp, esp
x86 assembly Symbolic Execution cmp [esp+8], 3

(input:esp, ebp, memory)

mov eax, [ebp+8]
shl eax, 2

add eax, JMPTBL
mov eax, [eax]

ja @ret

----------------------- @[ebpl+8] < 3 jmp eax
ja @ret |||»
__ 0
mov eax, [ebp+8] eaxl := @[esp+8]
shl eax, 2 eax2 := eaxl << 2
add eax, JMPTBL eax3 := eax2 + JMPTBL ret
mov eax, [eax] eax4 := @[eax3]
jmp eax eax4 == 2

Robin David - Phd defense, January 6th

DSE Path Coverage: Switch example

Extending the disassembly by covering new paths push ebp

mov ebp, esp

x86 assembly

np

Symbolic Execution cmp [esp+8], 3
(input:esp, ebp, memory)

mov eax ebp+8
@lesp] := ebp shl eax, g Pré]
b

""""""""""""""""""""" add eax, JIMPTBL
mov eax, [eax]

@[ebpl+8] < 3 jmp eax

0

@[ebpl1+8] < 3 A eax4
@[esp+8] < 3 A @[(@[esp+8]K 2) + IMPTBL]

Robin David - Phd defense, January 6th

ja @ret

ret

Path predicate ¢ :

DSE Path Coverage: Switch example

Extending the disassembly by covering new paths push ebp
mov ebp, esp
x86 assembly Symbolic Execution cmp [esp+8], 3

(input:esp, ebp, memory)

mov eax ebp+8
push ebp @[esp] := ebp shl eax, g o
b

""""""""""""""""""""""""""""" add eax, JIMPTBL
mov eax, [eax]

----------------------- @[ebpl+8] < 3 jmp eax
ja @ret |||»
nov eax, [ebp+e] | | eaxt i= Glesprs]
shleax, 2 || cax2 i= eaxl << 2 |
add eax, MWPTBL | | cax3 i= eax2 + IMPTEL |
nov eax, [eax] | |- caxs 1= eleaxs]
Cimp eax || eaxd == 2 Path predicate @ :

@[ebpl+8] < 3 A eax4 # [0,2]
@[esp+8] < 3 A @[(@[esp+8]K 2) + IMPTBL] # [0,2]

Robin David - Phd defense, January 6th

DSE limitations

Why is DSE limited in some ways to address obfuscation?

Scalability
path predicate solving, and path
coverage

Flexibility
Difficulty to tune execution in existing
engines

No infeasibility
DSE Solve reachability issues on a given
path (while some issues are infeasibility issues)

Thesis Contributions

The four main contributions in terms of binary analysis for obfuscated binaries

DSE for
obfuscation

#1 flexible C/S
policies via CSML

#2 infeasibility with
backward bounded
DSE.

Q
1
1
1

[ISSTA16]
[S&P17]

Implementation
in Binsec

T
()

#1 Binsec/SE with
solver optimizations

#2 instrumentation
with Pinsec

#3 IDA plugin Idasec.
Q

[SANER16]
[BHEU16]

Analysis
combinations

o N
4 #g |
\~C'l

#1 sparse disassembly
for obfuscated code
disassembly

#2 vulnerability discovery

#3 software testing

Q
1
1
1

[ICST15]
[SSPREW16]

Robin David - Phd defense, January 6th

Case-studies

l\

p o 1
\ 2 l

#1 packers large
scale study

#2 X-Tunnel
deobfuscation

°
1
1
1

[BHEU16]
[S&P17]

Toward semantic-aware disassembly

Long term objective aimed by this thesis

m Combination of symbolic, static and dynamic for deobfuscation

execution trace
. —— i
dynamic dynamic

disassembly IR symbolic
new input execution

partial safe\ I/obfuscation

CFG information

static
disassembly

Robin David - Phd defense, January 6th

2.

Dynamic Symbolic Execution

extensions and variants
[N NoNoNoNe

Concretization & Symbolization modulation

What are concretization and symbolization?

input: a, b
X = axb
X = x + 1
//assert x > 10

Robin David - Phd defense, Januar y 6th

Concretization & Symbolization modulation

What are concretization and symbolization?

O Propagation: logical propagation (without approximation)

Propagation
(path predicate)

input: a, b

X 1= axb x1l = a %
X 1= x + 1 A x2 = x1 +
//assert x > 10 A x2 > 10

b
1

Robin David - Phd defense, January 6th

Concretization & Symbolization modulation

What are concretization and symbolization?

O Propagation: logical propagation (without approximation)

O Concretization: replace a logical variable by its runtime value [Godefroid05]
e simplify the formula (but under-approximate it)
e simplify the computation of irrelevant parts of the program

Propagation Concretization
(path predicate)

input: a, b a =5

X = a x b x1l = a x b AN xl =5 xDb

X 1= x + 1 AN x2 = x1 + 1 A x2 = x1 + 1
>

//assert x > 10 A x2 > 10 AN x2 10

Robin David - Phd defense, January 6th

Concretization & Symbolization modulation

What are concretization and symbolization?

O Propagation: logical propagation (without approximation)

O Concretization: replace a logical variable by its runtime value [Godefroid05]
e simplify the formula (but under-approximate it)
e simplify the computation of irrelevant parts of the program

O Symbolization: replace a logical variable by a new symbol
e simulate non-deterministic effect (but over-approximate)
e injecting inputs in the execution

(path predicate)

input: a, b a =5

X = axb xl =axb AN xl =5 xb x1 = fresh
X 1= x + 1 A x2 = x1 + 1 AN x2 = x1 + 1 A x2 = x1 +1
//assert x > 10 A x2 > 10 A x2 > 10 A x2 > 10

mmp The goal is to find the right trade-off which is extremely important in practice

Robin David - Phd defense, January 6th

What is the issue of C/S ?

e Hardcoded in most engines
e Not well-documented (with its implication on soundness)

e Important to modulate in order to scale!

CSML: C/S Meta-Language usstaie

Modulating concretization and symbolization via a simple language.

O Why: need to find the balance between C &S to scale
O Need: an easy and generic specification system for C/S

O Properties:
e language running dynamically over the DSE algorithm
e defines the action to perform on each expression of the computation (i.e C,S,P)
e defined as a rule-based language to match any expression

¢ propagate (P)
. . . concretize (C)
exp symbolize (S)

predicate on predicate on predicate on predicate on
address instruction expression memory
state

mmp» Allowed to tune finely the performance of the path predicate computation

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

QY VINGIH x:: @[e?]:= xelux=>C

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

fI:)::@[e?]:: xnelix=C

match any
location

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

CSML rule : f?:::z el ix=C
match any

location match a
memory write
instruction

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

CSML rule: (I:)::::
match any

i match a
location . match the
memory write :
. : expression
instruction -
of write
address in

the instr

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

match any

location matcha matchthe match any
memory write :
. . expression memory
instruction -
of write state
address in

the instr

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

CSML rule: ::::: ﬁ@—» concretize
match any

location match a match the match any
memory write :
. . expression memory
instruction -
of write state
address in

the instr

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

@[ebp]+1
804876 @lebp] = @[ebpl+1 -
H vy @
CSML rule : [e7]:= »uelux=C
R
True True False True

Logical term: (bvadd +)

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

@[ebp]
804876 @[ebp:= @[ebpl+1 -
H vy @
CSML rule : [e?]:= xuelux=C
I
True True False True

Logical term : (bvadd (select mem) +)

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

eb
804876 @ebp] := @[ebp]+1 =p _
H vy @
CSML rule : [e?]=»uelux=C
§ L
True True False True

Logical term: (bvadd (select mem ebp) +)

Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

804876: inc [ebp]
DN @[ebp]:= @[ebp]+1

1
804876 @[ebp] = @[ebpl+1 _)
4 Yy 39
CSML rule: [e?]:=xelix=>C
3 S
True False True

True

Logical term: (bvadd (select mem ebp) + 1)
Robin David - Phd defense, January 6th

CSML: Example

Example of how a CSML rule works and matches the expression of a DBA instruction

p IR g 804876: inc [ebp]

Y
eb
804?76 @[ebp] :=_@[ebp]+1 P B
4 4 Yy ¥
QY VINGTIRE x @[e?]:= xelix=>C
¥ ¥ y
True True True True

constant runtime value
(after concretization of ebp)

(M J[CIRIdH (store mem|XXXX [bvadd (select mem ebp) + 1))

Robin David - Phd defense, January 6th

CSML: DSE algorithm revisited

E*,BL Fese i,01,¢1 E*,Ez Fese w2, (152
2* e 0p ea Fose 01 OF o, 1L A 2

binop

Expr: est
P s % bv g0 by, true var 2 koo X(v), true

e s Geste © 2 6L a ¥ ebeee Qo,te @ 2 select(X* (Mem), @)
2 one beso @ de 2% @ ebego o, e

unaryop

T*ebces Qe e ¢ L (d A Pe Atoval(le) = pe)
I, 2%, ¢, goto e ~ 1o, Z*, o', A(l.)

le — goto e

[nstr : to [
RREES G0N vR 3 gete s v L, B 0, AL

ite _Thetet b LGN NG g o Ticbes gede ¢ 2GNGNAge
1,5, ¢ ite(e) = li; la~ 11, 2, ¢, A(lh) 1, 2% ¢ite(e) : li; la ~ 1o, X%, ¢, Al2)

¥ ebess Qey e Dhew 2 X*[v « fresh] ¢ £ (A e A fresh = @.)

T

var assign X pv=e~1+1%" . qﬁ’,A(l L 1)
@ . X% el 9,00 X' € Foge @ e m 2 store(S*(Mem), @', @) dm 2 (DA de A der A freshm =m')
@ assign ;
LY ¢, Qe :=e~1+1,5 [Mem + freshm], dm, A(l + 1)
fresh, true if p=8§8
X ebesei e, e if p=P, X* el @e,oe p 2 csp_expr(l,i,e, X))

Co,pe NCp =9 if p=C, Z* elcso pe,pe and Cp 2 evals(e)

Instruction, location [and concrete state X are propagated inside all F.se rules, but we omit it for clarity.

Figure 4: Path predicate computation with C/S policy

CSML: DSE algorithm revisited

How is CSML integrated in the path predicate computation of the DSE algorithm

concretization symbolization

soundness [) [)
completeness o [)
I I
| |
L] e @

Robin David - Phd defense, January 6th

CSML: Results

Example of how a CSML rule works and match the expression of a DBA instruction

O Flexible C/S specification mechanism:

e clear formal semantic & integration into DSE
e encode all literature policies

e can be improved with various extensions

O [first] Quantitative Evaluation:

e 5 differents policies on memory
e onsome SAMATE benchmarks and all coreutils (769 programs)
e rule matching computation cost negligible, avg: 1.45% (amortized by solving)

e significant time difference between policies, but no clear winner

=> Validates the need for a flexible mechanism

Robin David - Phd defense, January 6th

Forward DSE allows to check
feasibility properties

O find new targets for dynamic jumps

O cover a new branch

If we want to check infeasibility
properties, better to g0

O dynamic jump closure

O opaque predicates, stack tampering

O conditional self-modification etc...
-

Backward-Bounded DSE: General idea

How it can be helpful for solving obfuscation problems.
mov eax, ds:X

O Goal: check that the branch to mov ecx, ds:Y
XX is infeasible

A imul ecx, ecx
m false negative :
(still feasible w.r.t. ecx, eax) ' A imul ecx, 7
11
.. 1 sub ecx, 1
m true positive : :
(backtrack enough constraints to prove o imul eax, eax
the infeasibility) 11
: : cmp ecx, ecX
I 1
.. jz XX
infeasible
branch?

m Turning a potential infinite set of paths to a finite path suffixes

Robin David - Phd defense, January 6th

BB-DSE: Call stack tampering

BB-DSE applied on call stack tampering when with multiple paths

call XX
A

O Goal A

check that the return address
cannot be tampered by the

I

|

: add [esp], 9
function :

l

I

|

I

) cmp edx, [esp+4]
m false negative

miss the tampering (too small bound)

m correct B
find the tampering A

= + m complete
validate the tampering for all paths

Robin David - Phd defense, January 6th, 2017

Backward-Bounded DSE (szri7cuomieq

Overall behavior, properties and strength [m——mmm—mm———— ;

O Summary: N
e backward for infeasibility O ™
e bounded reasoning for scale O h

e adaptable bound (for the need) ’

o

dynamic for robustness
(hence false positive)

paths over

/ approximated

backward
bounded
DSE

paths
lost in
computation

O Shortcomings:
e False negative (FN): too small bound
e False positive (FP): not enough paths

(forward) DSE bb-DSE

feasibility queries ° °

infeasibility queries ° J

scale ° °

Robin David - Phd defense, January 6th

BB-DSE: Bound selection

Overall behavior, properties and strength

O Need to be adapted to the problem to solve

O Application to obfuscation:
e (Call stack tampering: ret —call
e Opaque predicates: Trade-off FP/FN

FN: OP missed

(%) ? False negatives (backtracking
detection ! not enough)

rate .
empiric results

obtained through
False positives " benchmarking

FP: not OP but
infeasible w.r.t.
path taken

Robin David - Phd defense, January 6th, 2017

BB-DSE: Results

Overall behavior, properties and strength
O Scalability:
e getrid of path length issue

e kbound allows to adjust to “hardness” of formulas

QO Evaluation (ground truth value):
e Opaque predicates on test files obfuscated with O-LLVM

e (all stack tampering on coreutils obfuscated with Tigress
e Yield very few FP /FN (3.17% with k=16)

O Performances (against forward DSE on a 115K instrs trace)

bound k #Timeout Total time
il = gy gy B8 » too many false

forward DSE / 1 7749 | . 2460 | 17h43m | positives
backward DSE : 00 : 7748 : 2461 : 17h48m :
BB-DSE 100 7406 0 18m78s
BB-DSE 20 54 0 4mias

Robin David - Phd defense, January 6th

BB-DSE: Results

Overall behavior, properties and strength
O Scalability:
e getrid of path length issue

e kbound allows to adjust to “hardness” of formulas

QO Evaluation (ground truth value):
e Opaque predicates on test files obfuscated with O-LLVM

e Call stack tampering on coreutils obfuscated with Tigress large scale
Yield very few FP /FN (3.17% with k=16) benchmarks
[J . wi = . . .
y ’ given in section
O Performances (against forward DSE on a 115K instrs trace) (case-studies)

! e e —p too many false
forward DSE | / ! 27:19_| 2460 . 17h43m positives
backward DSE : 00 : 7748 : 2461 : 17h48m :

BB-DSE 100 i 7406 i 0 . 18m78s i
BB-DSE 20 i 54 0 amas

Robin David - Phd defense, January 6th

3.

Implementation
[IDA|Pin|Bin] sec

0e0000O0

Binsec platform overview

Overview of Binsec, all its component and interaction between them

Loader
-ELF _ - Linear
- PE (ongoing) - Recursive
- Linear+Recursive
- Dynamic

Decoder

- protected/non-
protected

- 480 instrs handled

- no floating point instr

(other arch
coming..)

Disassembly

Memory models

- framework: Pin
- generate execution trace
- Linux/Windows
- remote control

- on-the-fly value patching

Binsec/SE

Path Selector
Strategies:

- path predicate

: g;: computation
. - stub engine

- MinCall-DFS h

- MinCall-BFS =Cis palicy

Analysis

Formula
generator
Optims:
- constant folding
- rebase
- Read-Over-Write

Symbolic

Expression

- regions Sil

- low-level regions (more
abastract semantic)

mplifications

- by SMT
- by rewriting rules

- by SMT + rewriting rules

Analysis <

invariant
export

Weakest
Precondition

Usage:
- invariant refinement
for Al

- enumerating values

Theories: Bitvector, Array
Solvers: Z3, Boolector, Yices

Robin David - Phd defense, January 6th

|
|
|
|
|
t > | -flat
|
|
|
|
|

Abstract
Interpretation

- Kset

- Intenval

- taint

- equality (relational)

+ context sensitive
analysis, reduced product

- delayed
- with threshold
+ widening point detection

+ high-level predicate

._recovery
2 Bl
a

- liveness

- constant folding

Simplification
level

- instruction
- block
- program

remove unused:
- flags
- variables

NSEC

Intermediate Representation (IR)

Encode the semantic (and all side-effect) of a machine instruction

bitvector size statically known
side-effect free
bit-precise

Language DBA

no floats

no thread modeling
no self-modification
no exception
x86(32) only

bitvector (constant value)

v | bv | L |7

@[e] (read memory)
e Oe| Oe
v (variable)

v{i,j} (extraction)
@[e] (write memory)

lhs := e

goto e | goto 1

ite (c)? goto 11; goto 12
assert e | assume e ..

mm» Many other similar IR: REIL: BIL, VEX, LLVM IR, MIASM IR, Binary Ninja IR

Robin David - Phd defense, January 6th

DBA: Example

Example of how an instruction is modeled in the DBA language

Decoding: imul eax, dword ptr[esi+0x14], 7

res32 i= @[esi(32) + 0xl4(32)] * 7(32)

Ctempea i= (exts Glesdy, + Ox1d,,] 64) * (exts 7., 64)
OF : (temp64(64)¢(ethreS32(32)64)) ..
SF : J_ ..
ZF : J_ ..
I S R
eax = res32(32>

Robin David - Phd defense, January 6th

Binsec/SE: Platform architecture sanerie

Three components of the Dynamic Symbolic Execution engine

t BINSEC

main binary
execution analysis platform .
DSE, bb-DSE, queries
trace/ CSML x
/mw analy&l
inputs

results

m PINSEC

dynamic analysis
instrumentation

#IDASEC

IDA plugin for
result exploitation

Robin David - Phd defense, January 6th

= PINSEC

Pinsec dynamic instrumentation based on Pin 2.14-71313 to generate execution trace

Execution Trace Limit Instrumentation Windows & Linux
As a protobuf file either in time (with Tested on Windows 7
containing all the timeout) or in space and Debian (kernel
runtime values (number of instructions) officially compatible <
4.0)
Configuration]SON On-The-Fly Patching Function Stubs
All parameters can be Allow to patch, registers or Allow to retrieve
specified in a JSON file memory addresses at any function parameters of
for reproducibility moment of execution known library calls
Remote Control Polymorphism tracking Streaming Trace

Provide more interaction Track gelf-quification Streaming instructions
m with breakpoints occurring during in real-time to Binsec
and value patching (beta) execution for online analysis

ig still lacks many anti-debug/anti-VM countermeasures

Robin David - Phd defense, January 6th

#DASEC

IDA Pro (from 6.4) plugin to assist reverse-engineering tasks

m Leveraging Binsec features into IDA (triggering analyses and post-processing)

DBA decoding

Decode any instruction and
shows graphically the DBA
semantic of the instruction

Reading execution traces

Load execution trace, generated
by Pinsec, shows runtime values,
allows to vizualize the path taken

on the CFG etc.

Robin David - Phd defense, January 6th

Dynamic disassembly

Allows to disassemble in IDA by
following the execution trace.
(For now, stop on the first
self-modification layer)

Binsec remote connection

Allows to trigger analyses on Binsec
and to retrieve results for
post-analysis data exploitation.

tm BINSEC/SE

Dynamic Symbolic Execution engine performing the core execution

Path selection

for coverage with DSE thanks
to different strategies DFS, BFS,
Min-Call..

CSML policy engine
generic C/S policy engine
implementing the CSML language
for dynamic modulation of C/S

Configurable JSON

Analyses configurable by a JSON
file (common with Pinsec)

® Xr ®

Stub engine

allows to over-approximate
side-effect of library call
without executing them

Multiple Solvers

Supports officially, Z3, boolector,
Yices, CVC4 by using the common
SMTLIB2 format

predicate optimizations

Implement various path predicate optimizations
providing a great performances

mm» Many other DSE engines: Mayhem (ForAllSecure), Triton (QuarksLab), S2E ...

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX |
; ebp0® := (select mem0® espO)

pop ebp : ...
L espl := espO + 0x20
;ebpl = ebpo + 1
' OFO = ebpo +1

-inc ebp | ...
. SFO =0

émeml := (store memO@ (espl - 0x20) ebpl)
pUSh ebp
Check that the ret | :
value read in
memory is equal to

ebp0 meant to hold
the ret address _J>_>

mov eax,

ret : (assert (= (select meml esp2) ebpO)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

Optimizations: T S GIe ISR E IS PRI
i ebp0® := (select memO@ espoO)
pop ebp e e
- espl :=(esp0 + 0x20 >
............... _.._._._._._._._._.?._n_-’.-_—._.’_._._._._._._._._._._._._._._._._._.
. ebpl := ebp0 ;‘ 1

inc ebp e : ..
. SFO =0

IR Eos [FIETER PR ER oo

‘meml := (stiore mem@ (espl - 0Ox20) ebpl)
push ebp i")"-"w(........... v ..
Rebase a new symbol

definition by reusing older : R
definition of it MOV €3X, | eax0 := (selett- meml Ox084858)
' [804856] | ' Wl
.._._._._._._._; N g
ret ' (assert (= (select meml esp2) ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX |
Optimizations: _._._._._._._._._; ...

i ebp0® := (select memO@ espoO)

pop ebp : ..
L espl := espO + 0x20
; ebpl := ebpd + 1
' OFO = ebpo +1

‘inc ebp | ..
. SFO =0

émeml := (store memO@ (espl - 0x20) ebpl)
pUSh ebp . ..
Rebase a new symbol '

definition by reusing older : RS
definition of it MOV €3X, | eax0 := (select Rém.‘l 0x084858)
' [804856] S
..................................... e
ret ' (assert (= (select meml esp0O) :=bpo)

Robin David - Phd defense, January 6th

Optimizations:

Practical examples of optimizations

Optimizations:

O Read-Over-Write #1

Read-Over-Write #1

A select in an array can be
replace by the value
written iff performed on
the same logical indexes

for path predicate

call XXX |
; ebp0® := (select mem0® espO)
pop ebp : ..
L espl := espO + 0x20
; ebpl := ebpd + 1
' OF0 := ebp® +1| 9x084858 =? (espl-0x20)
'inc ebp | .. ('cann'ot"compar‘e')
. SFO =0
:A *
; \ |
B S AN |
: ‘o |
‘meml := (store mem@\(espl - 0x20) ebpl)
push ebp
mov eax,
[804856]
ret :(assert (= (select meml esp@) ebpO)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX |
Optimizations: _._._._._._._._._: ...
i ebp0® := (select memO@ espoO)
pop ebp PP PSPPI P PP
L espl := espO + 0x20
O Read—OVer—Write #1 Fom e = _: ..
. ebpl := ebp0® + 1 | esp0® == (espl - 0x20)
E .. hecause s
' OF@ := ebpO +1 espl = espO + 0x20
-inc ebp | .. (samebase)
. SFO =0
S A Ao
: ! I
e e
‘ b S Lo S
Read-Over-Write #1 ' meml := (store mem@ (espl - 0x20) ebpl)
PUSH @bp i .‘.\. ..
] i esp2 := espoO \
A select in an array can be IS F SR N
replace by the value N S
written iff performed on > 1 eax® := (select meml 0x084858)
. . [804856]
the same logical indexes e
ret : (assert (= (select meml esp@) ebpO)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

Optimizations:

O Read—Over—erte #1 I _: e

-inc ebp | ..
. SFO =0
D e eaaaaeaeaeaaaaaa e
' e
Read-Over-Write #1 ' meml := (store mem@ (espl - 0x20) ’gbpl)
PUSKR @D i+ oemssos o c 37
! . 1
A select in an array can be N il N
replace by the value Y e |)
written iff performed on [804856], " eax0® := (select meml 0x084858) 7
the same logical indexes IS T PG
1 ’/
ret ' (assert (= ebpl ¥ ebp0)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX | esp °—\0x6ff68<"
Optimizations: _________________ : == === ~ _.\
' ebpo (seI'Lect memo espo\)\
pop ebp P '\\
fespl £= espO + 0x20 \
O Read-over-Write #1 L e e e - = _:_s—_« _\
. ebpl = epr + 1 \
O constant propaga“on : \ ..
| OFO := ebpp +1 :
inc ebp TRLIIERIPRPRPPPPRP IR A L TERER TR
i SFO =0 \\ II
i \\ /
e e e \ /
. ’
. . P e o S s Gl
constant propagation ' meml := (store mem@ espl gbpl)
push ebp .’//
: o= -“< - -
Standard optimization | e e T
evaluating all operations IS
involving only constant > 1 eax0 (select meml 0x084858)
[804856]
values. e
ret ' (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX | esp® := Ox6ff6s

Optimizations: _________________ e i SR LIC I E
i ebp0 := (select mem® Ox6ff68)
pop ebp : ...
t espl := Ox6ff88
') Read-Over-Write #1 L. S Sssis s s
. ebpl := ebp0d + 1
O Constant propagation : ...
' OF@ := ebpO +1
-inc ebp | ...
. SFO :=0

constant propagation ' meml := (store mem® Ox6ff88 ebpl)
pUSh ebp
Standard optimization ' '
evaluating all operations

involving only constant
values.

mov eax,

ret ' (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX | espo := Ox6ff68
Optimizations: _________________ : ...
1 ebp0 := (select mem@ Ox6ff68)
pop ebp : ...
- espl := Ox6ff88
O Read-over-Write #1 Lo e _: ...
. ebpl := ebp0d + 1
O Constant propaga“on : ...
. ' OF® := ebpO +1
O Read-Over-Write #2 v e R
. SFO :=0
Read-Over-Write #2 ' meml := (store memo ‘ox6f88) ebpl)
push ebp .‘—\-—\)
’ .= disjoint
For a select, if the indexof | | Rl P
the previous store is oy eax ! PR
disjoint, the select can be > | eax0 := (select meml(0x084858)
[804856] | < o
performed on the IS S ot
previous array. ret : (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX | espo := Ox6ff68

Optimizations: _________________ oo
1 ebp0 := (select mem@ Ox6ff68)
pop ebp : ...
- espl := Ox6ff88
O Read_OVer_Write #1 o m e e _: ...
. . ebpl := ebp0d + 1
O Constant propaga“on : ...
. ' OF® := ebpO +1
O Read-Over-Write #2 v e R
. SFO :=0

IS T T R

Read-Over-Write #2 ‘' meml := (store{\memO)OXfo88 ebpl)
push ebp T TP
. esp2 := 0x6ff68 |

For a select, if the index of

the previous store is I
disjoint, the select can be > i eax0® := (select memO@ 0x084858)
[804856] |
performed on the IS ST
previous array. ret : (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

Optimizations:

O Read-Over-Write #1
O constant propagation
O Read-Over-Write #2

O memory flattening

memory flattening

Optimization removing
the array theory if all
select operation
performed on initial
memory (memO).

call XXX | esp® := Ox6ff68
; ebpO := (’select mem0)0x6ff68)

pop ebp I ~-—.—-u-’\ ..
- espl := Ox6ff88 \

________________ _i._._._._._._._._._._._._._._._._._.__._._._._._._._._._._._._._.
i ebpl := ebpd + 1
T ~all select in.
' OF0 = ebpo +1 memory performed

e I —— on.memo.
. SFO := 0
o oo oo et e e 4.
i 1
i /

.._._._._._._._!._._._._._._._._._._._._._._._._._._._I
' meml := (store memO Ox6ff88 ebpl)

pUSh ebp .I ...
. esp2 := Ox6ff68 /

................ : S RS S S S S

mov eax, | - T T =k

0 =)
[804856] | eax0 seleft_ r_rlelno Ox084858)
ret ' (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

Optimizations:

O Read-Over-Write #1
O constant propagation
O Read-Over-Write #2

O memory flattening

memory flattening

Optimization removing
the array theory if all
select operation
performed on initial
memory (memO).

call XXX | esp® := Ox6ff68
;epr = mem_dw_6ff68

pop ebp : ...
- espl := Ox6ff88 \\

________________ _i._.

: ebpl := ebp0® + 1 bitvector symbols,
I ———— .

. ' OF®@ := ebpO +1 memory cells of

inc ebp : ... _i.n_it_ialmemor_y
. SFO =0 -
e Lo
i I}
i I}

_________________ : Y A

é meml := (store memO Ox6ff88 ebpl)

PUSH @D 1+
| esp2 := Ox6Tf68 N

mov eax, ! _ ;

[804856] IeaxO mem_dw_084858

ret ' (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

made removable by:

call XXX | espo—=—0x6££68
. . T AR TSR cstprop.
Optimizations: ,
" ebp® := mem_dw_6ff68
b : ...
Pop ebp i 1 - oxeffgg Maderemovable by:
) ! ' cst prop + RoW
O Read—over—WrIte #1 L e e e - = _: p_p ____________________________
_ . ebpl := ebp0d + 1
O Constant propaga“on : ...
. 9-F9—--=—e-bpe—|—]: unused
O Read-Over-Write #2 e D p I L B
O memory flattening sFe—o il @
O backward pruning .
Lo _éfh_o'_/éb_lle_'t;y_:'_'
'-memkl—-es;O'Fe—M_
: ! RoW + mem flat
backward prunlng push ebp : _ maderemovableby:
\ EEI52 * E”E EE 4L
Remove a” unused terms L momo s om0 e om0 : r ?b_a_s@__cs_t_p[c)_p ________________
for the formula to solve MOV @aX, o —t=mem—edw—084958 d
[804856] ' She Hiuse
ret ' (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Practical examples of optimizations

call XXX |
Optimizations: _________________ : ...
" ebp® := mem_dw_6ff68
pop ebp : ...
O Read-over-Write #1 _._._._._._._._._é ...
. . ebpl := ebp0d + 1
O Constant propaga“on : ...
O Read-Over-Write #2 e Ty
O memory flattening e
O backward pruning g
backward pruning push ebp : ...
Remove a” unused terms L momo s om0 e om0 : ...
for the formula to solve mov eax, !
[804856] |
ret ' (assert (= ebpl ebpo)

Robin David - Phd defense, January 6th

Optimizations: for path predicate

Example of how an instruction is modeled in the DBA language

Without optimization

(assert (= (selectvmeml esp2) ebEO)

... S .__.___l___._ (NS T
(store memo (espl - 0x20) ebpl) (espl = 0x20) (select memo esp@)
................. -
(esp® + 0x20) (epr + 1) Kesp@ + 0x20)

I
........... rscoomc=cmooo=acs

(select memO espO)

After optimization

(assert (= ebpl ebpo)
4

(mem dw_6ff68 + 1) mem dw_ 6ff68

Robin David - Phd defense, January 6th

Read-Over-Write: Design

How we turned a standard RoW quadratic complexity into n (log x)

@[esp +3]—-1 @[esp +4]—-0 @[100]—12 @[50]—0 @[40]—5 @[ebp+10]—1
| | | | | | |
Mo M M. : M M. Ms Mo
. 0O(n)
/ \N - Ms[100] = 12
Standard RoW (store-chain) O Ms[47] = M.[47]

Our optimized RoW (store-map chain)

@esp+l| , . | ot 100—12 | @lebp+] if all addresses
! — ! : 10—1 constant only
P N h o

50—-0 '
— - > m m | Ohemap
PN ¥ T~ ¥ !
Mo 4.0 M: 40—5 Ms Me
AN T
()(y/og(x))'/\? ~--Ms[100] = 12

S MS[47] = M[47]

Robin David - Phd defense, January 6th

Read-Over-Write: Discussions

What are the difference in complexity and time depending on the policy

O Complexity:

standard RoW. | optimized Row AR nb store
n: nb load
constant addresses , . C axlogemy L Y nb maps
! 5 . z.max card
symbolic addresses . nxm nxyxlog® | map

O Benchmark on a path predicate (337k instrs):

standard ROW " optimized Row

constant addresses 79.32s 26.61s

symbolic addresses 40.84s 26.97s

mmp The structure can be enhanced to improve the base comparison (in progress)

Robin David - Phd defense, January 6th

4,

Analysis Combinations
00000O0

Analysis Combinations

The three combinations designed and implemented during the course of my PhD

Software Testing Use-After-Free
Infeasibility Vulnerability
test requirements Discovery

Sparse
Disassembly

o
o .
. Dynamic disassembly
Abstract Interpretation Abstract Interpretation improved by static

and Weakest-Precondition and Dynamic Symbolic disassembly guided by DSE

Calculus greybox Executiop to detect and and obfuscation
combination. validate UaF data

5 5 5
98% Infeasible CVF'Z(” 5f5221 ~50% gain on a
test objectives validated in JasPer. real world malware
detected [ICST15] jointwork CEA, Verimag [S&P17]

with Josselin Feist [SSPREW16]

Robin David - Phd defense, January 6th

Sparse disassembly: Components

Main components of the sparse disassembly combination

m enlarging disassembly in a safe and more precise manner

execution trace
) dynamic

disassembly symbolic

instrumentation new inout EXECUtI_On
in Pinsec P bb-DSE in

Binsec/SE

dynamic

partial safe I/obfuscation

information

static

disassembly
linear, recursive
in Binsec

The ultimate goal is to provide a semantic-aware disassembly based on information
computed by symbolic execution

Robin David - Phd defense, January 6th

ey

Sparse disassembly: Application

Result of applying the combination using obfuscation related data

o + m safe dynamic disassembly il
with dynamic jumps jmp

eax
jnz

call Fot

Robin David - Phd defense, January 6th

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

o ~/~ SMC Layer #1
o + m safe dynamic disassembly (jl !
with dynamic jumps | jmp |

eax !

o T multiple self-modification
segmentation :

SMC Layer #2
call

\\

reti

Robin David - Phd defense, January 6th

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

“ SMC Layer #1
jl

0 + m safe dynamic disassembly /

with dynamic jumps ! Smp
o 1 multiple self-modification eax

segmentation i

o m enlarge partial CFG on
genuine conditional jump

SMC Layer #2
call

\\

reti

Robin David - Phd defense, January 6th

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

- ~

o <~ SMC Layer #1 "

° + m safe dynamic disassembly / il ‘:

with dynamic jumps i mp

o 2 multiple self-modification | eax

segmentation 5 ;

o m enlarge partial CFG on | |
genuine conditional jump ['

. SMC Layer #2

o m do not disassemble dead / fl \,

| ca !

branch of opaque predicate ! ret,

Robin David - Phd defense, January 6th

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

- ~

o /" SMC Layer #1
o + m safe dynamic disassembly ’ il

with dynamic jumps

jmp
eax

-—
1
1

o multiple self-modification
segmentation

o m enlarge partial CFG on
genuine conditional jump ~ TTTTTTTTTTTTToToooooTToos ’

SMC Layer #2
call

o m do not disassemble dead
branch of opaque predicate

- m disassemble the target of |
tampered ret !

Robin David - Phd defense, January 6th

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

- ~

o /" SMC Layer #1
o + m safe dynamic disassembly ’ il

with dynamic jumps jmp
- eax

o multiple self-modification
segmentation

o m enlarge partial CFG on \
genuine conditional jump ~ TTTTTTTTTTTTTTmmeo et ’

SMC Layer #2
call

o m do not disassemble dead
branch of opaque predicate

o m disassemble the target of ! pA
tampered ret LA b
o m do not disassemble the /

return site of tampered ret

Robin David - Phd defense, January 6th

Sparse disassembly: Results

Disassembly results obtained with sparse disassembly

O Benchmark:

e compared the disassembly coverage with Objdump, IDA, Binsec
e acontrolled environment (5 toy examples, 5 coreutils from State-of-the-Art)

e opaque predicates, call stack tampering (separately)

O Results: Opaque predicates

sample gg ¢ perfect Objdump (sBerc]:Sri(;) (vgglg] A)

simple-if 37 185 240 | 244 185 o B23% |
huffman 558 3226 3594 3602 3226 10.26%
mat_mult 249 854 1075 1080 854 20.67%
bin_search 105 833 mo ms 833 24.95%
bubble_sort 121 1026 1531 1537 1026 32.98%

mm» On-going work, functionalities not yet implemented (disassembly across waves)

Sparse disassembly: Results

Disassembly results obtained with sparse disassembly

O Benchmark:

e compared the disassembly coverage with Objdump, IDA, Binsec
e acontrolled environment (5 toy examples, 5 coreutils from State-of-the-Art)

e opaque predicates, call stack tampering (separately)

O Results: Call stack tampering

sample gg ¢ perfect Objdump (E;Ziiz) (vgglg] A)

simple-if 37 83 95 | 98 83 o 1445% |
huffman 558 659 678 683 659 2.80%
mat_mult 249 461 524 533 461 12.0%
bin_search E 105 E 207 E 231 E 238 E 207 E 10.39% E
bubble_sort 121 170 182 185 170 6.6%

mm» On-going work, functionalities not yet implemented (disassembly across waves)

5.

Case-Studies

Packers & X-Tunnel
00000

Packers: Case-study #1

Evaluation aiming at finding opaque predicates and call stack tampering

O

O

Evaluation of 33 packers
(packed with a stub binary)

Why packers ?

realistic protections
do contain obfuscation

usually first protection layer
(if not the single)

Looking for (with bb-DSE):

e opaque predicates

e call stack tampering

e record of self-modification layers
Goal:

e perform a systematic and fully

automated evaluation of BB-DSE on
packers (for robustness, scale etc)

Robin David - Phd defense, January 6th

Obsidium
JD Pack
WinUpack

Armadillo

Packman

EP Protector
ACProtect

TELock SVK
Yod&'g “(,Zrypter
Neolite

UPXMoleBox
FSeUpack

Crypter da's Protector

Pack

BoxedApp

Petite
nPackPE Spin

Enigma

Setisoft Themida

Pack

MysticVMProtect

)
+
-
)
Q
-
2
n
g
(G
C
<

Packers

call stack tampering

(7]
[
e}
O
=
ye
(9]
—
o
(]
=)
(o
O
o
o

48

ACProtect v2.0

11

1

ASPack v2.12

78

Crypter v1.12

1

Expressor

FSG v20

Mew

PE Lock

14

1

RLPack

1

TELock v0.51

Upack v0.39

on,

no such obfuscati
Several packers still evade the DB,

e

Several hav

o

o

3 reached the 10M instructions limit,

)
+
-
)
Q
-
2
n
g
(G
C
<

Packers

call stack tampering

(7]
[
e}
O
=
ye
(9]
—
o
(]
=)
(o
O
o
o

o0 o0
< © = o)
T}

— <
© — o —
o)}

< <
T} 0
=2 ~ o~

[OIR%)
- QO o_lo_
© U
U
n
- e“ [
S c
S w© o
c Y
=
f—— n _ -]
D bo
15 = o
es
-4 < C - - 1
= O
— — — —
AR eE-
o
Y s (7) &
— m N~ g ©
o
N
> M S
w > > 5
5| 5|28
P O o
o o Q 5
@)) 2 X
< < @) L

FSG v20

Mew

90

PE Lock

14

1

RLPack

1

TELock v0.51

Upack v0.39

on,

no such obfuscati

e

Several hav

o

Several packers still evade the DB,

o

3 reached the 10M instructions limit,

Packers: Analysis results

opaque predicates call stack tampering
packers #th | #SMC OK OP OK tamper

ACProtect v2.0

The technique scale

ASPack v2.12 . .
on significant traces

Crypter v1.12 GM : : : /24 : ;125 :< 78)
Expressor ; 63K 1 1 / 1 || Many true positives. | ©
FSG v2.0 | 6gk | / 1 | Some packers are i 6 i 0
i i i - using it intensively i :
Mew i 59K/ 101 01 28 : & i 6 ! 1
PE Lock vf2.3M) 0 1 10 6 1 95 | @ i 4 | 3
RLPack 1 941K 1 1+ 1 11 46 2 14 0
TELock v0.51 | 406K . 1 1 11 5 1 5 . 2 | 3 1
Upack v0.39 PO711K 1 0 1 0 2 1 41 : 1 7 : 1

o Several have no such obfuscation,
o Several packers still evade the DB,
o 3 reached the 10M instructions limit,

Packers: Analysis results

opaque predicates call stack tampering
packers . #th | #SMC OK OP OK tamper

ACProtect v2.0

The technique scale

ASPack v2.12 . .
on significant traces

Crypter v1.12 GM : : : /24 : ;125 :< 78)
pressor ossk / ! || Many true positives. |~ 4 | °
FSG v2.0 | 68k | / -1 | Some packers are 6 0
; ; ; - using it intensively ; :
Mew | 59K / R @
PE Lock vf2.3M) 1 010 6 95 @ 4 : 3
RLPack i 41K i 1 i 1 | I . I et I 14 i
- o | Packers using retto |~ 0
TELock vO.51 | 406Kk | 1 1 1 perform the final tail | . 3 i @
: : : transition to the : :
UpOCk v0.39 i 711K i 1 i 1 entrypoint w

o Several have no such obfuscation,
o Several packers still evade the DB,
o 3 reached the 10M instructions limit,

Packers: Tricks and patterns found

CST in ASPack

1004329 mov [ebp+t0Ox3a8], eax

Several of the tricks detected by the analysis

1018f7c jns 0x1018f92 10330ae xor ecx, ecx

(and all possible variants 10330b0 jnz 0x10330ca
ja/jbe, jp/jnp, jo/jno..)

ST in ACProtect [PPSR P TIPS
10043bf ret

1001000 push 16793600

] 1001005 push 16781323
CSTin ACProtect | ESuSurrrrrror o s s r o R

1004328 call OX1004318 i
.. 100166b ret

100431c ret

Robin David - Phd defense, January 6th

Packers: Tricks and patterns found

Several of the tricks detected by the analysis
CST in ASPack

1004329 mov [ebp+t0Ox3a8], eax
1018f7a js 0x1018f92 OP in Armadillo 10043af popa [0x10043bb
. R~ P
1018f7c jns 0x1018f92 = T 10043b0 jnz ©x10043ba K

.. _

R 2

(and all possible variants 10330b0 jnz 0x10330ca -

Enter SMC Layer 1 7

ST in ACProtect [R s e s pr s S
10043bf ret

1001000 push 16793600

] 1001005 push 16781323
CSTin ACProtect | ESuSurrrrrror o s s r o R

1004328 call OX1004318 i
.. 100166b ret

ja/jbe, jp/jnp, jo/jno..)

100431c ret

Robin David - Phd defense, January 6th

Packers: Tricks and patterns found

Several of the tricks detected by the analysis
CST in ASPack

1004329 mov [ebp+t0Ox3a8], eax
1018f7a js 0x1018f92 OP in Armadillo 10043af popa [0x10043bb
. RS, B
1018f7c jns 0x1018f92 = T 10043b0 jnz ©x10043ba K
.. _
I -
(gnd‘all Pos§1b1e'var1ants 10330b0 jnz 0x10330ca Enter SMC Layer 1 7
ja/jbe, jp/jnp, jo/jno..) —/0o o— — T | S
10043ba push | 0x10011d7

ST in ACProtect [R s e s pr s S
10043bf ret

1001000 push 16793600

] 1001005 push 16781323
CSTin ACProtect | ESuSurrrrrror o s s r o R 10040fe: mov bl, Ox0
100100a

ret 10041cO: cmp bl, Ox0
1004328 11 0x1004318 .. ool ’
car 1004103: jnz 0x1004163
.. e .
1004318 add [esp], 9 ZF=0 ZF =1

100431c ret : .
1004163: jmp 0x100416d 1004105: 1inc [ebp+0Oxec]

[oool [oool

Robin David - Phd defense, January 6th

Packers: Tricks and patterns found

Several of the tricks detected by the analysis
CST in ASPack

1004329 mov [ebp+t0Ox3a8], eax
1018f7a js 0x1018f92 OP in Armadillo 10043af popa [0x10043bb
.. IEERRRRRRRRRR—— e 2t runtime ..
1018f7c jns 0x1018f92 = T 10043b0 jnz ©x10043ba K
.. _
R 2
(and all possible variants 10330b0 jnz 0x10330ca Enter SMC Layer 1 ,/’
ja/jbe, jp/jnp, jo/jno..) —0o — — T w
10043ba push | 0x10011d7
CST in ACPrOtect ...
10043bf ret
1001000 push 16793600
! 1001005 push 16781323
CSTin ACProtect | Suu o RRORR 10040fe: mov bl, ©x0
100100a ret 10041cO: cmp bl, 0x1 <=
1004328 call OX1004318 oo -mP ’ T~
1004103: jnz 0x1004163 \
.. 100100b ret P
1004318 add [esp], 9 ZF =0 ZF =1 at runtime
100431c ret . ;
1004163: jmp 0x100416d 1004105: 1inc [ebp+0Oxec]
[...] [oool

Robin David - Phd defense, January 6th

X-Tunnel: Case-study #2

Introduction of the Sednit group, alleged attacks, methods and techniques used

m APT28, Fancy Bear, Sofacy, Sednit, Pawn Storm

Ministry of Defense NATO, EU institution TV5 Monde DN(_: Delrnocratig
(France) GO\{ernment Bundestag | (France) N Nat|9rja Comm|tt(eui)
First seen Officials (Germany) Political Activists
(Poland) (Russia) I

2008 (® 2011-2014 O)

B : 6
Office (RCE) : Flash (x2)
CVE-2015-2424 , CVE-2015-[3043,7645]

. o o .
Windows (LPE) Java (x2) Flash + Windows 10
CVE-2015-1701 CVE-2015-[2590,4902] sandbox escape win32k.sys

Robin David - Phd defense, January 6th

X-Tunnel: Case-study #2

Introduction of the Sednit group, alleged attacks, methods and techniques used

m APT28, Fancy Bear, Sofacy, Sednit, Pawn Storm

Ministry of Defense NATO, EU institution TV5 Monde DN(_: Delrnocratig
(France) GO\{ernment Bundestag | (France) N Nat|9rja Comm|ttﬁjes)
First seen Officials (Germany) Political Activists
(Poland) (Russia) I

2008 (® 2011-2014 O)

B : 6
Office (RCE) : Flash (x2)
CVE-2015-2424 , CVE-2015-[3043,7645]

. o o .
Windows (LPE) Java (x2) Flash + Windows 10
CVE-2015-1701 CVE-2015-[2590,4902] sandbox escape win32k.sys

N

Droppers

Bootkit/Rootkit ML

Downloader

Mac OSX trojan

X-Tunnel

USB C&C

Robin David - Phd defense, January 6th

X-Tunnel: Proxy component

What it is, features and samples description

X-Agent
O What is it: Ciphering proxy allowing X-Agent(s) not able to /
reach the C&C directly to connect to it through X-Tunnel /’ \
O Features: Encapsulate any TCP-based traffic into a RC4 cipher ! X-Tunnel

stream embedded into a TLS connection V
X

O Where: Used in at least Bundestag® & DNC”# attacks

Sample #1 Sample #2

C&C

Hash 42DEE3[.] ; C637EO[.] ; 99B454[.]
Size 11 Mo 21 Mo 1.8 Mo
Creation date E 25/06/2015 E 02/07/2015 E 02/1/2015
#functions 3039 3775 3488
#instructions (IDA) E 231907 E 505008 E 434143

mp A huge thanks to Joan Calvet
Robin David - Phd defense, January 6th, 2017

X-Tunnel: Proxy component

What it is, features and samples description

X-Agent
O What is it: Ciphering proxy allowing X-Agent(s) not able to /
reach the C&C directly to connect to it through X-Tunnel /’ \
O Features: Encapsulate any TCP-based traffic into a RC4 cipher ! X-Tunnel

stream embedded into a TLS connection V
X

O Where: Used in at least Bundestag® & DNC”# attacks

Cc&C
Sample #1 Sample #2
Hash | 42DEE3[] | C637EO[.] | 99B454[.]
Size . 1Mo 1 21Mo i 18Mo
Creation date | 25/06/2015 ! 02/07/2015 | 02/11/2015
#functions E 3039 . 3775 1 3488 Widely
i i i obfuscated
#instructions IDA) | 231907 | 505008 | 434143 with opaque
: : : predicates

mp A huge thanks to Joan Calvet
Robin David - Phd defense, January 6th, 2017

X-Tunnel: Questions

Experimental issues intended to be solved in this use-case

Can we remove Are there new
the obfuscation? functionalities?

LDUNNO 0L

ey

. . i
.Y
. 5

www.yourwebsitename.com

X-Tunnel: Analysis

Analysis process and different steps followed

m Detect and remove all opaque predicates to extract a clean CFG

2. High-level 4. Reduced CFG
) predicate recovery extraction
Analysis context to identify predicates using data computed
fully static analysis used by previous steps

because:

® no self-modification

® need to contact C&C 1. Opaque predicates 3.Dead and

® need to wait clients detection spurious instruction

with bb-DSE and IDAsec removal
with liveness propagation

Robin David - Phd defense, January 6th

High-level predicate recovery

Synthesis and extraction of the different opaque predicates used

O Behavior: Computes the dependency, generates the predicate

mov esi, dword_5D7A84 (define—funﬁes-iz (load32_at memory #x005d7a84))
mov edi, dword_5D7A80 (def'ine—ﬂd/n edio V(\load32_at memory #x005d7a80))
... I\
1 S
jz loc_44D9FA (assert ((not (= ZF2 #bl)ﬁ;\
\\\ IR
| S~o S
... .."-.,.\\
imul esi, esi (define-fun esi3 (bvmul /es12 (es12)) N
... ;,
imul eax, esi, 7 — | (define-fun eax2 (-b;m_uf’es13,#x0000000‘/))
.. ;,
dec eax (define-fun eax3 (bvsub ’—eax2 #XOOOO({G)Ol))
.. 4,—"'_
1
imul edi, edi (define-funredil (bvmul /ed'lo\/ed'lO))
... Lm;mmua___Emmmmmmmmmmmmmm
d (define-fun res?2'8' vasuf)'!\eax?,\(ed'll))
cmp. - eax ed (define-fun ZF4 (bvcomp T€35328"#x00000000))
jinz loc_44D922 (assert (= ZF4 #bl))

Robin David - Phd defense, January 6th, 2017

High-level predicate recovery

Synthesis and extraction of the different opaque predicates used

O Behavior: Computes the dependency, generates the predicate

—_

mov esi,dword 5D7A84
‘mov edi, dword_SD7AB0
. JZ | OC_44D9FA
J
imul esi, esi
Imu| eox es|7
“aé; éé;
ImUl edl edl

(define-fun esi2 (load32_at memory #x005d7a84))

......................... A

(def'ine—ﬂd/n edio V(\load32_at memory #x005d7a80))
.................... I\

(assert ((not (= ZF2 #bI)ﬁ;\
N,

e e = —

(define-funjedil (bvmul ’ed'IO\’ed'lO))
.......................... T —

(define-fun rp';‘%7'8"' l"h\/QuF?Ipax?Ipd'l ™)

((bvsub (bvmul (bvmul esi2 esi2) 7) 1) = (bvmul ediO ediO) » 7x2 -1 % g

| << T < — T o=/

]

Robin David - Phd defense, January 6th, 2017

X-Tunnel: Results

Results in terms of opaque predicates detections and false positive/negative

m Ok m Opaque predicate = False positive m OP missed
possible

O 2 predicates synthesized: 7g2 -1 2 X2 5 £ 92 +3 signature

X< + 1

#cond jmp pb-DSE Synthesis Total

Sample #1

Sample #2

Robin David - Phd defense, January 6th

Analysis: Obfuscation distribution

Obfuscation accross functions in both binaries

O Goal: Compute the percentage of conditional jump obfuscated within a
function

3000

Allow to narrow the
2250 in-depth analysis on
these functions

(~500 more likely of
1500 interest)

Many not

obfuscated 750

functions

(statically B II

I(l)nked library o 20-30% 40-50% | 60-70% BO-90%
penssL...) T0-20% 30-40% 50-60% 70-80% 90-100%

Robin David - Phd defense, January 6th, 2017

X-Tunnel: Code coverage

Results of the liveness propagation and identification of spurious instructions

C637 Sample #1 99B4 Sample #2
#total instruction | 505,008 434 143
"""""""""" #olive| +279483 24177
"""""""""" #dead | 121794 | -3764
""""""" #spurious | 103731 | -79202
| 47,576 9,270

In both samples the difference with the un-obfuscated binary is
very low (probably due to some noise)

Robin David - Phd defense, Januar y 6th

X-Tunnel: Reduced CFG extraction

Original CFG

X-Tunnel: Reduced CFG extraction

Results of extracting a CFG without the obfuscation

Alive
Spurious
m Dead

Tagged CFG

Robin David - Phd defense, January 6th

X-Tunnel: Reduced CFG extraction

Results of extracting a CFG without the obfuscation

]

WATY

1. 7?. .?'.

e NOTBAD
Extracted CFG

Robin David - Phd defense, January 6th

X-Tunnel: Conclusion

Reversing conclusion and future work opening

New functionalities ?

Manual checking of difference did not appeared
to yield significant differences or any new
functionalities...

O Obfuscation: Difference with O-LLVM (like)
e some predicates have far dependencies (use local variable)
e some computation reuse between opaque predicates

O Next:
e in-depth graph similarity (Bindiff) to find new functionalities)

e integration as an IDA processor module (IDP) ?

O For more: Visiting the Bear Den, Joan Calvet, Jessy Campos, Thomas Dupuy
[RECON 2016][Botconf 2016][CCC 2016]

Robin David - Phd defense, January 6th, 2017

6.

Conclusion
00000

Conclusion: Contributions

General conclusion about contributions provided by this thesis

m Practical approaches for formal analysis-based deobfuscation

DSE for Analysis
obfuscation Combinations
C/S policies, CSML Source software Testing,

Backward Bounded UaF detection, Sparse

DSE Implementation disassembly Case-Studies
in Binsec Large scale-automated
DSE engine in Binsec/SE, analysis of packers,
optimizations, IDASec, X-Tunnel deobfuscation

Pinsec network
interaction etc.

Robin David - Phd defense, January 6th

Conclusion: Publications

Publications submitted as part of my thesis fulfillment

ICST 2015
Graz, Austria

SANER 2016
Osaka, Japan

ISSTA 2016
Saarbrucken,
Germany

SSPREW 2016
Los Angeles,
USA

l

l

l

I

Sound and Quasi-Complete Detection of Infeasible Test
Requirements, Sébastien Bardin, Mickaél Delahaye, Robin David, Nikolai

Kosmatov, Mike Papadakis and Yves Le Traon
8th IEEE International Conference on Software Testing

Binsec/SE: A Dynamic Symbolic Execution Toolkit for
Binary-Level Analysis, Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent
Mounier, Josselin Feist, Marie-Laure Potet and Jean-Yves Marion

23rd International Conference on Software Analysis, Evolution and Reengineering

Specification of Concretization and Symbolization Policies in

Symbolic Execution, Robin David, Sébastien Bardin, Josselin Feist,
Marie-Laure Potet, Thanh Dinh Ta, Jean-Yves Marion
25th International Symposium on Software Testing and Analysis

Finding the Needle in the Heap: Combining Static Analysis and

Dynamic Symbolic Execution to Trigger Use-After-Free, Josselin
Feist, Sébastien Bardin, Laurent Mounier, Robin David, Marie-Laure Potet
6th Software Security, Protection and Reverse Engineering Workshop

Backward-Bounded DSE: Targeting Infeasibility Questions on

Obfuscated Codes, Robin David, Sébastien Bardin and Jean-Yves Marion
(submitted S&P 17)

Robin David - Phd defense, January 6th

Conclusion: Perspectives

Near and long term improvements both from research and implementation perspectives

O Binary analysis & Deobfuscation futur work:

more obfuscations: VM, conditional self-modification, DGA etc..
(with a similar approach)

DSE robustness: initial state, taint, path predicate optimizations

O Malware analysis:

exploring tradeoff between comprehension & detection
more semantic-aware disassembly (to get rid of obfuscation)
combination with control-flow (graph-based) signatures (Jean-Yves Marion)

combination with data semantic summary signatures (Arun Lakhotia)

m Obtaining more accurate signatures

Robin David - Phd defense, January 6th

HUGE THANKS to the jury,
CEA co-workers, LORIA, family and friends

Thanks to all the people | worked with during my thesis:

Allan Blanchard

" ,; \fz Adel i Pnle‘t i
ounir Assal
-wisFlorent Kirch
mata
Y Ruhqrd Bonichon Francois Bobot Steve
Aner Maroneze e an = ve S a r l 0
David Buhler

Zakaria Chihani s trc Sarah Zen Hou"

Sebas ien Bardi

Bjo“elm Feist@B

Steve Kremer rto Giacobazz

s Tristan Le Gall

oan Calve

~“Patricia Mou

Freyssinetse.

Link references

1. IBM Security, 2016 - Ponemon Cost of Data Breach Study,
https://www-03.ibm.com/security/data-breach/

2. Intel Security, June 2014 - Net Losses: Estimating the Global Cost of Cybercrime,
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf

3. Hamilton Place Strategies, Feb 2016 - Cybercrime Costs More Thank You Think,
http://www.hamiltonplacestrategies.com/sites/default/files/newsfiles/HPS%20Cybercrime2 0.
pdf

4. Panda Security, Jan 2016 - 27% of all Recorded Malware Appeared in 2015,
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-i
n-2015/

5. Symantec, April 2016 - Internet Security Threat Report,
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

6. Netzpolitik, June 2015 - Digital Attack on German Parliament: Investigative Report on
the Hack of the Left Party Infrastructure in Bundestag
https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-report-on-the-h

ack-of-the-left-party-infrastructure-in-bundestag/

7. CrowdStrike June 2016 - Bears in the Midst: Intrusion into the Democratic National
Committee,
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/

8. NCCIC, FBI, Dec 2016 - GRIZZLY STEPPE - Russian Malicious Cyber Activity,
https://www.us-cert.gov/sites/default/files/publications/]JAR 16-20296A GRIZZLY%20STEPPE-2

016-1229.pdf

Robin David - Phd defense, January 6th, 2017

https://www-03.ibm.com/security/data-breach/
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.hamiltonplacestrategies.com/sites/default/files/newsfiles/HPS%20Cybercrime2_0.pdf
http://www.hamiltonplacestrategies.com/sites/default/files/newsfiles/HPS%20Cybercrime2_0.pdf
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-report-on-the-hack-of-the-left-party-infrastructure-in-bundestag/
https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-report-on-the-hack-of-the-left-party-infrastructure-in-bundestag/
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/
https://www.us-cert.gov/sites/default/files/publications/JAR_16-20296A_GRIZZLY%20STEPPE-2016-1229.pdf
https://www.us-cert.gov/sites/default/files/publications/JAR_16-20296A_GRIZZLY%20STEPPE-2016-1229.pdf

