
PhD Defense - Robin David

Start

Formal Approaches for Automatic
Deobfuscation and Reverse-engineering

of Protected Codes

January 6th, 2017

Agenda of the presentation

2

Introduction

Dynamic Symbolic Execution extensions
and variants

Implementation: Binsec

Combination of analyses

Thesis context, challenges addressed in this subject. Why analysing binary is difficult, how to address
obfuscated programs and contributions

First contribution of this thesis, various improvment of Dynamic Symbolic Execution to scale on
obfuscated codes thanks to C/S policies and backward-bounded DSE.

Second contribution, a full fledge symbolic execution engine Binsec/SE integrated in Binsec along with
a dynamic instrumentation Pinsec and an IDA Pro plugin Idasec.

Third contribution, presentation of three analyses combination targeting different problems.
Emphasizing
on the sparse disassembly combination providing a more precise and accurate program disassembly.

1

2

3

4

5

6

Case-studies
Fourth contribution, two case-studies validating the approach. The first a large scale study of packers
highlithing various tricks used, the second a full deobfuscation of the X-Tunnel malware.

Conclusion
Summary of the thesis contributions and opening on possible improvements

Introduction

1.

Context: Malware analysis
What is a malware and why does it matter to analyse them ?

Robin David - Phd defense, January 6th, 20174

Malware is a generic term grouping all softwares
developed with the intention to harm and to
threaten computer systems or their users.

Definition

Some numbers:

Average cost of a breach1

(almost always involving malware) 4M$

Annual cost of cybercrime2,3 > 400B$

New malware sample detected daily4,5 > 230K

Context: Malware more & more critical

Robin David - Phd defense, January 6th5

Context: Malware more & more critical

Robin David - Phd defense, January 6th6

Binary analysis
Specificities inherent to binary analysis

Robin David - Phd defense, January 6th7

Why on binary? Because source code generally not available on malware

● no distinction between code & data (jump eax)

● only bitvector arithmetic
● memory not “typed” (one flat array)

 Handicap / Problematic

● compiler independent (and potential issues)

● language independent (+ source free)

● no source code

 Rule of the game (w.r.t. source level)

switch jump table
“val%d\n”
_fp_hw, _IO_stdin_used

unknown

unknown

Code
(Functions)

main

__libc_csu_init

__libc_csu_fini
__term_proc.fini

.text

.rodata

.eh_frame_hdr

Sections
8D 4C 24 04 83 E4 F0 FF 71 FC 55 89 E5 53 51 83
EC 10 89 CB 83 EC 0C 6A 0A E8 A7 FE FF FF 83 C4
10 89 45 F0 8B 43 04 83 C0 04 8B 00 83 EC 0C 50
E8 C0 FE FF FF 83 C4 10 89 45 F4 83 7D F4 04 77
3B 8B 45 F4 C1 E0 02 05 98 85 04 08 8B 00 FF E0
C7 45 F4 00 00 00 00 EB 23 C7 45 F4 01 00 00 00
EB 1A C7 45 F4 02 00 00 00 EB 11 C7 45 F4 03 00
00 00 EB 08 C7 45 F4 04 00 00 00 90 83 EC 08 FF
75 F4 68 90 85 04 08 E8 29 FE FF FF 83 C4 10 8B
45 F4 8D 65 F8 59 5B 5D 8D 61 FC C3 66 90 66 90
66 90 66 90 90 55 57 31 FF 56 53 E8 85 FE FF FF
81 C3 89 12 00 00 83 EC 1C 8B 6C 24 30 8D B3 0C
FF FF FF E8 B1 FD FF FF 8D 83 08 FF FF FF 29 C6
C1 FE 02 85 F6 74 27 8D B6 00 00 00 00 8B 44 24
38 89 2C 24 89 44 24 08 8B 44 24 34 89 44 24 04
FF 94 BB 08 FF FF FF 83 C7 01 39 F7 75 DF 83 C4
1C 5B 5E 5F 5D C3 EB 0D 90 90 90 90 90 90 90 90
90 90 90 90 90 F3 C3 FF FF 53 83 EC 08 E8 13 FE
FF FF 81 C3 17 12 00 00 83 C4 08 5B C3 03 00 00
00 01 00 02 00 76 61 6C 3A 25 64 0A 00 AB 84 04
08 B4 84 04 08 BD 84 04 08 C6 84 04 08 CF 84 04
08 01 1B 03 3B 28 00 00 00 04 00 00 00 54 FD FF

Binary analysis: Example Switch
What is inside a blob of binary ?

Robin David - Phd defense, January 6th8

◼ code ◼ dead bytes ◼ global csts ◼ strings ◼ pointers ◼ other

Assembly
[...]

...

[...]

...

[...]

[...]

..

rep retn

push ebx
sub esp, 8
call get_pc[..]
add ebx, 0x1217
add esp, 8
pop ebx
retn

[Reps10] [Meng16]

Disassembly process
The three different steps to get through in order to disassemble a program

Robin David - Phd defense, January 6th, 20179

Non-code bytes

Missing symbols (function addr)

Instruction overlapping

Indirect control-flow

Non-returning functions

Function code sharing

Non-contiguous function

Tail calls

Code
discovery

CFG
reconstruction

CFG
partitioning

(aka. Decoding
opcodes)

(aka. Building the graph,
nodes & edges)

(aka. Finding functions,
bounds etc)

Malware now uses obfuscation and
other tricks to hide their intents

How to find and to remove obfuscation?
How to differentiate the cat from the dogs ?

Robin David - Phd defense, January 6th11

Obfuscation Techniques (Some)
What is obfuscation ? What are the different kinds of obfuscation ?

Robin David - Phd defense, January 6th12

Obfuscation: Any means aiming at slowing-down the analysis process for a
human or an automated algorithm.

Control Data Dynamic

CFG flattening

VM (Virtual-Machines)

Call stack tampering

Anti-debug / Anti-tampering

Polymorphism
(self-modification resource ciphering)

Opaque predicates

Jump encoding
(direct → indirect/computed)

Static

Signal / Exception

⚫ ⚫

⚫ ⚫

⚫ ⚫

⚫ ⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫

Target Against

[Collberg97] [Barak12]

Opaque predicates
What is opaque predicate, and what is its purpose ?

Robin David - Phd defense, January 6th13

Definition: Predicate always
evaluating to true (resp false)
(but for which this property is difficult
to deduce)

Can be based on:
● Arithmetic
● Data-structure
● Pointer
● Concurrency
● Environment

eg: 7y2 - 1 ≠ x2

(for any value of x, y in modular
arithmetic)

↧

mov eax, ds:X
mov ecx, ds:Y
imul ecx, ecx
imul ecx, 7
sub ecx, 1
imul eax, eax
cmp ecx, eax
jz <dead_addr>

Corollary, dead branch allows to:
● Grow the code (artificially)
● Drown the genuine code

Call stack tampering
What is a call stack violation and its implication for analysis ?

Robin David - Phd defense, January 6th14

address instr

80483d1 call +5

80483d6 pop edx

80483d7 add edx, 8

80483da push edx

80483db ret

80483dc .byte{invalid}

80483de [...]

Definition: Alter the standard
compilation scheme of a call
and ret instructions

Corollary:
● Real ret target hidden and

returnsite potentially not code

● Impede the recovery of control
flow edges

● Impede the high-level function
recovery

General Goal & Challenges
What are the objectives of this thesis and the research challenges it implies ?

Robin David - Phd defense, January 6th, 201715

● Binary analysis

● Scalability

● Robustness w.r.t obfuscation

Challenges

● Analysis of obfuscated binaries and malware

● Recovering a high-level view of the program

● Locating and removing obfuscation if any

● raising the difficulty of program obfuscation

● improving malware comprehension
(not necessarily detection)

Objectives

Deobfuscation
● Revert the transformation (often impossible)

● Simplify the code to facilitate later analysis

⇒ best effort approach (undecidable problems)

Existing Analysis Techniques

Robin David - Phd defense, January 6th, 201717

DSE
Model Checking

Fuzzing

symbolic
analysis

dynamic
analysis

static
analysis

SSE Debugging
Abstract
Interpretation

WP

syntactic

semantic

Instrumentation

Existing Analysis Techniques

Robin David - Phd defense, January 6th, 201718

DSE
Model Checking

Fuzzing

symbolic
analysis

dynamic
analysis

static
analysis

SSE Debugging
Abstract
Interpretation

WP

DSE

syntactic

semantic

Instrumentation

Existing Analysis Techniques

Robin David - Phd defense, January 6th, 201719

DSE
Model Checking

Fuzzing

symbolic
analysis

dynamic
analysis

static
analysis

SSE Debugging
Abstract
Interpretation

WP

DSE

syntactic

semantic

Why not syntactic analysis ?
❌ Obfuscation usually alter the syntax
⇒ But semantic is preserved

Instrumentation

Existing Analysis Techniques

Robin David - Phd defense, January 6th, 201720

DSE
Model Checking

Fuzzing

symbolic
analysis

dynamic
analysis

static
analysis

SSE Debugging
Abstract
Interpretation

WP

DSE

syntactic

semantic

Why not abstract interpretation ?
❌ hindered by SMC and tricks
against static analysis
⇒ DSE takes advantage of dynamic

Instrumentation

Existing Analysis Techniques

Robin David - Phd defense, January 6th, 201721

DSE
Model Checking

Fuzzing

symbolic
analysis

dynamic
analysis

static
analysis

SSE Debugging
Abstract
Interpretation

WP

DSE

syntactic

semantic

Instrumentation

Why not dynamic analysis ?
❌ Only cover on path
⇒ DSE can find new paths

State of the Technique in disassembly

Robin David - Phd defense, January 6th22

The different disassembly approaches and their shortcomings and strength

● Correct: only genuine
(executable) instructions are
disassembled

● Complete: all genuine
instructions are disassembled

Notation

Standard approaches:

State of the Technique in disassembly

Robin David - Phd defense, January 6th23

The different disassembly approaches and their shortcomings and strength

● Correct: only genuine
(executable) instructions are
disassembled

● Complete: all genuine
instructions are disassembled

Notation

static dynamic

scale

complete (coverage)

correct

robust (obfuscation)

DSE

⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫ ⚫

dynamic jump

Standard approaches:
static disassembly

jmp
eax

State of the Technique in disassembly

Robin David - Phd defense, January 6th24

The different disassembly approaches and their shortcomings and strength

● Correct: only genuine
(executable) instructions are
disassembled

● Complete: all genuine
instructions are disassembled

Notation

static dynamic

scale

complete (coverage)

correct

robust (obfuscation)

DSE

⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫ ⚫

dynamic jump input dependent

Standard approaches:
static disassembly
dynamic disassembly

jmp
eax

State of the Technique in disassembly

Robin David - Phd defense, January 6th25

The different disassembly approaches and their shortcomings and strength

● Correct: only genuine
(executable) instructions are
disassembled

● Complete: all genuine
instructions are disassembled

Notation

static dynamic

scale

complete (coverage)

correct

robust (obfuscation)

DSE

⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫ ⚫

⚫ ⚫ ⚫

dynamic jump input dependent

Standard approaches:
static disassembly
dynamic disassembly

jmp
eax

coverage +
obfuscation infos

Symbolic Execution
Definition and how it works in practice ?

Robin David - Phd defense, January 6th26

Mean of executing a program using symbolic values (logical
symbols) rather than real values (bitvectors) in order to obtain an
in-out relationship of a path.

Definition

Source Code (C)
int f(int a, int b) {

 if (a < 10) {

 if (a > b) {

 printf(“OK”);

 }

 }

}

How to reach “OK” ?

Formula:
a < 10 ∧ a > ba < 10

a > b

print(“OK”)

Solution:
a=5, b=1

(using SMT solvers)

[King76]

Dynamic Symbolic Execution (aka concolic)
What is dynamic symbolic execution and advantages?

Robin David - Phd defense, January 6th27

Advantages
● path sure to be feasible [unlike static]
● can generate new inputs [unlike dynamic]
● thwart basic tricks [code-overlapping, SMC, etc]
● easier than static semantic analysis

○ next instruction always known
○ loops unrolled

Main properties:

● works on a dynamically generated path

● can take advantage of runtime values [concretization]

[Godefroid05]

DSE Path Coverage: Switch example
Extending the disassembly by covering new paths

Robin David - Phd defense, January 6th28

x86 assembly Symbolic Execution
(input:esp, ebp, memory)

push ebp @[esp] := ebp

mov ebp, esp ebp1 := esp

cmp [ebp+8], 3
 @[ebp1+8] < 3

ja @ret

mov eax, [ebp+8] eax1 := @[esp+8]

shl eax, 2 eax2 := eax1 << 2

add eax, JMPTBL eax3 := eax2 + JMPTBL

mov eax, [eax] eax4 := @[eax3]

jmp eax eax4 == 2

push ebp
mov ebp, esp
cmp [esp+8], 3

ja @ret

jmp eax

mov eax, [ebp+8]
shl eax, 2
add eax, JMPTBL
mov eax, [eax]

ret

>

≤

0 2

DSE Path Coverage: Switch example
Extending the disassembly by covering new paths

Robin David - Phd defense, January 6th29

Path predicate φ :
@[ebp1+8] < 3 ∧ eax4 == 2

@[esp+8] < 3 ∧ @[(@[esp+8]≪ 2) + JMPTBL] == 2

x86 assembly Symbolic Execution
(input:esp, ebp, memory)

push ebp @[esp] := ebp

mov ebp, esp ebp1 := esp

cmp [ebp+8], 3
 @[ebp1+8] < 3

ja @ret

mov eax, [ebp+8] eax1 := @[esp+8]

shl eax, 2 eax2 := eax1 << 2

add eax, JMPTBL eax3 := eax2 + JMPTBL

mov eax, [eax] eax4 := @[eax3]

jmp eax eax4 == 2

push ebp
mov ebp, esp
cmp [esp+8], 3

ja @ret

jmp eax

mov eax, [ebp+8]
shl eax, 2
add eax, JMPTBL
mov eax, [eax]

ret

>

≤

0 2

DSE Path Coverage: Switch example
Extending the disassembly by covering new paths

Robin David - Phd defense, January 6th30

Path predicate φ :
@[ebp1+8] < 3 ∧ eax4 == 2

@[esp+8] < 3 ∧ @[(@[esp+8]≪ 2) + JMPTBL] == 2
≠ [0,2]
≠ [0,2]

x86 assembly Symbolic Execution
(input:esp, ebp, memory)

push ebp @[esp] := ebp

mov ebp, esp ebp1 := esp

cmp [ebp+8], 3
 @[ebp1+8] < 3

ja @ret

mov eax, [ebp+8] eax1 := @[esp+8]

shl eax, 2 eax2 := eax1 << 2

add eax, JMPTBL eax3 := eax2 + JMPTBL

mov eax, [eax] eax4 := @[eax3]

jmp eax eax4 == 2

1

push ebp
mov ebp, esp
cmp [esp+8], 3

ja @ret

jmp eax

mov eax, [ebp+8]
shl eax, 2
add eax, JMPTBL
mov eax, [eax]

ret

>

≤

0 2

DSE limitations

31

Why is DSE limited in some ways to address obfuscation?

Scalability
path predicate solving, and path

coverage
1

Flexibility
Difficulty to tune execution in existing

engines
2

No infeasibility
DSE Solve reachability issues on a given
path (while some issues are infeasibility issues)

3

Thesis Contributions
The four main contributions in terms of binary analysis for obfuscated binaries

Robin David - Phd defense, January 6th32

DSE for
obfuscation

Implementation
in Binsec

Analysis
combinations

Case-studies

#1 flexible C/S
policies via CSML

#2 infeasibility with
backward bounded
DSE.

#1 Binsec/SE with
solver optimizations

#2 instrumentation
with Pinsec

#3 IDA plugin Idasec.

#1 sparse disassembly
 for obfuscated code
disassembly

#2 vulnerability discovery

#3 software testing

 #1 packers large
scale study

#2 X-Tunnel
deobfuscation

#1 #2 #3 #4

[ISSTA16]
 [S&P17]

[SANER16]
[BHEU16]

[ICST15]
[SSPREW16]

[BHEU16]
 [S&P17]

Toward semantic-aware disassembly
Long term objective aimed by this thesis

Robin David - Phd defense, January 6th33

Focus: Combination of symbolic, static and dynamic for deobfuscation

static
disassembly

dynamic
disassembly

dynamic
symbolic

execution

partial safe
CFG

obfuscation
information

new input

execution trace

Dynamic Symbolic Execution
extensions and variants

2.

Concretization & Symbolization modulation
What are concretization and symbolization?

Robin David - Phd defense, January 6th35

program

input: a, b
x := a × b
x := x + 1
//assert x > 10

Concretization & Symbolization modulation
What are concretization and symbolization?

Robin David - Phd defense, January 6th36

program

input: a, b
x := a × b
x := x + 1
//assert x > 10

Propagation
(path predicate)

Propagation: logical propagation (without approximation)

 x1 = a × b
⋀ x2 = x1 + 1
⋀ x2 > 10

Concretization & Symbolization modulation
What are concretization and symbolization?

Robin David - Phd defense, January 6th37

program

input: a, b
x := a × b
x := x + 1
//assert x > 10

Propagation
(path predicate)

Propagation: logical propagation (without approximation)

 x1 = a × b
⋀ x2 = x1 + 1
⋀ x2 > 10

Concretization

Concretization: replace a logical variable by its runtime value
● simplify the formula (but under-approximate it)
● simplify the computation of irrelevant parts of the program

  a = 5
⋀ x1 = 5 × b
⋀ x2 = x1 + 1
⋀ x2 > 10

[Godefroid05]

Concretization & Symbolization modulation
What are concretization and symbolization?

Robin David - Phd defense, January 6th38

The goal is to find the right trade-off which is extremely important in practice

program

input: a, b
x := a × b
x := x + 1
//assert x > 10

Propagation
(path predicate)

Propagation: logical propagation (without approximation)

 x1 = a × b
⋀ x2 = x1 + 1
⋀ x2 > 10

Concretization

Concretization: replace a logical variable by its runtime value
● simplify the formula (but under-approximate it)
● simplify the computation of irrelevant parts of the program

  a = 5
⋀ x1 = 5 × b
⋀ x2 = x1 + 1
⋀ x2 > 10

Symbolization

Symbolization: replace a logical variable by a new symbol
● simulate non-deterministic effect (but over-approximate)
● injecting inputs in the execution

 x1 = fresh
⋀ x2 = x1 + 1
⋀ x2 > 10

[Godefroid05]

What is the issue of C/S ?
● Hardcoded in most engines

● Not well-documented (with its implication on soundness)

● Important to modulate in order to scale !

CSML: C/S Meta-Language [ISSTA16]
Modulating concretization and symbolization via a simple language.

Robin David - Phd defense, January 6th40

Allowed to tune finely the performance of the path predicate computation

Need: an easy and generic specification system for C/S

Why: need to find the balance between C & S to scale

Properties:
● language running dynamically over the DSE algorithm
● defines the action to perform on each expression of the computation (i.e C,S,P)
● defined as a rule-based language to match any expression

predicate on
address

predicate on
instruction

predicate on
expression

predicate on
memory

state

propagate (P)
concretize (C)
symbolize (S)

ᶰloc ᶰinst ᶰexp ᶰM:: :: ::

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th41

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th42

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C
match any

location

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th43

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C
match any

location match a
memory write

instruction

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th44

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C
match any

location match a
memory write

instruction

match the
expression

of write
address in

the instr

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th45

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C
match any

location match a
memory write

instruction

match the
expression

of write
address in

the instr

match any
memory
state

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th46

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C
match any

location match a
memory write

instruction

match the
expression

of write
address in

the instr

match any
memory
state

concretize

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th47

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C

Logical term :

804876 @[ebp] := @[ebp]+1

True True TrueFalse

@[ebp]+1

 (bvadd +)

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th48

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C

Logical term :

804876 @[ebp] := @[ebp]+1

True True TrueFalse

@[ebp]

 (bvadd (select mem) +)

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th49

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C

Logical term :

804876 @[ebp] := @[ebp]+1

True True TrueFalse

ebp

 (bvadd (select mem ebp) +)

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th50

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C

Logical term :

804876 @[ebp] := @[ebp]+1

True True TrueFalse

1

 (bvadd (select mem ebp) + 1)

CSML: Example
Example of how a CSML rule works and matches the expression of a DBA instruction

Robin David - Phd defense, January 6th51

X86 instr : 804876: inc [ebp]

DBA instr : @[ebp] := @[ebp] + 1

CSML rule : ⋆ :: @[e?] := ⋆ :: e! :: ⋆ ⇒ C

Logical term :

804876 @[ebp] := @[ebp]+1

True True TrueFalse

(store mem XXXX (bvadd (select mem ebp) + 1))

ebp

True

constant runtime value
(after concretization of ebp)

CSML: DSE algorithm revisited
How is CSML integrated in the path predicate computation of the DSE algorithm

Robin David - Phd defense, January 6th52

CSML: DSE algorithm revisited
How is CSML integrated in the path predicate computation of the DSE algorithm

Robin David - Phd defense, January 6th53

concretization symbolization

soundness ⚫ ⚫

completeness ⚫ ⚫

CSML: Results
Example of how a CSML rule works and match the expression of a DBA instruction

Robin David - Phd defense, January 6th54

[first] Quantitative Evaluation:
● 5 differents policies on memory

● on some SAMATE benchmarks and all coreutils (169 programs)

● rule matching computation cost negligible, avg: 1.45% (amortized by solving)

● significant time difference between policies, but no clear winner

Flexible C/S specification mechanism:
● clear formal semantic & integration into DSE

● encode all literature policies

● can be improved with various extensions

⇒ Validates the need for a flexible mechanism

Forward DSE allows to check
feasibility properties

If we want to check infeasibility
properties, better to go backward

find new targets for dynamic jumps

 cover a new branch

dynamic jump closure

opaque predicates, stack tampering

conditional self-modification etc...

Backward-Bounded DSE: General idea
How it can be helpful for solving obfuscation problems.

Robin David - Phd defense, January 6th56

Goal: check that the branch to
XX is infeasible

XX

jz XX

cmp ecx, ecx

imul eax, eax

sub ecx, 1

imul ecx, 7

imul ecx, ecx

mov ecx, ds:Y

mov eax, ds:X

infeasible
branch?

◼ false negative
(still feasible w.r.t. ecx, eax)

◼ true positive
(backtrack enough constraints to prove
the infeasibility)

Insight: Turning a potential infinite set of paths to a finite path suffixes

BB-DSE: Call stack tampering
BB-DSE applied on call stack tampering when with multiple paths

Robin David - Phd defense, January 6th, 201757

Goal
check that the return address
cannot be tampered by the
function

◼ false negative
 miss the tampering (too small bound)

◼ correct
 find the tampering

◼ + ◼ complete
 validate the tampering for all paths

ret

mov eax, edx

inc edx
mov
edx, 0

jnz XX

cmp edx, [esp+4]

add [esp], 9

call XX

Backward-Bounded DSE [S&P17(submitted)]
Overall behavior, properties and strength

Robin David - Phd defense, January 6th58

Summary:
● backward for infeasibility
● bounded reasoning for scale
● adaptable bound (for the need)
● dynamic for robustness

(hence false positive)

Shortcomings:
● False negative (FN): too small bound
● False positive (FP): not enough paths

paths
lost in
computation backward

bounded
DSE

paths over
approximated

(forward) DSE

feasibility queries

scale

infeasibility queries

bb-DSE

⚫ ⚫

⚫ ⚫

⚫ ⚫

BB-DSE: Bound selection
Overall behavior, properties and strength

Robin David - Phd defense, January 6th, 201759

Need to be adapted to the problem to solve

Application to obfuscation:
● Call stack tampering: ret →call
● Opaque predicates: Trade-off FP/FN

bound

(%)
detection

rate

0

False negatives

False positives

best

~16-20
empiric results
obtained through
benchmarking

FN: OP missed
(backtracking
not enough)

FP: not OP but
infeasible w.r.t.
path taken

BB-DSE: Results
Overall behavior, properties and strength

Robin David - Phd defense, January 6th60

Evaluation (ground truth value):
● Opaque predicates on test files obfuscated with O-LLVM

● Call stack tampering on coreutils obfuscated with Tigress

● Yield very few FP /FN (3.17% with k=16)

Scalability:
● get rid of path length issue

● k bound allows to adjust to “hardness” of formulas

Performances (against forward DSE on a 115K instrs trace)

bound k #UNSAT #Timeout Total time

forward DSE / 7749 2460 17h43m

backward DSE ∞ 7748 2461 17h48m

BB-DSE 100 7406 0 18m78s

BB-DSE 20 54 0 4m14s

too many false
positives

BB-DSE: Results
Overall behavior, properties and strength

Robin David - Phd defense, January 6th61

Evaluation (ground truth value):
● Opaque predicates on test files obfuscated with O-LLVM

● Call stack tampering on coreutils obfuscated with Tigress

● Yield very few FP /FN (3.17% with k=16)

Scalability:
● get rid of path length issue

● k bound allows to adjust to “hardness” of formulas

Performances (against forward DSE on a 115K instrs trace)

bound k #UNSAT #Timeout Total time

forward DSE / 7749 2460 17h43m

backward DSE ∞ 7748 2461 17h48m

BB-DSE 100 7406 0 18m78s

BB-DSE 20 54 0 4m14s

large scale
benchmarks
given in section
(case-studies)

too many false
positives

Implementation
[IDA|Pin|Bin] sec

3.

Binsec platform overview

Robin David - Phd defense, January 6th63

Overview of Binsec, all its component and interaction between them

Intermediate Representation (IR)

Robin David - Phd defense, January 6th64

Encode the semantic (and all side-effect) of a machine instruction

Many other similar IR: REIL: BIL, VEX, LLVM IR, MIASM IR, Binary Ninja IR

Language DBA
bv bitvector (constant value)

l := loc (addr + offset)

e := v | bv | ⊥ | ⊤
@ [e] (read memory)
e ◇ e | ◇ e

lhs := v (variable)
v{i,j} (extraction)
@[e] (write memory)

inst := lhs := e
goto e | goto l
ite (c)? goto l1; goto l2
assert e | assume e ..

● no floats
● no thread modeling
● no self-modification
● no exception
● x86(32) only

Shortcomings

● bitvector size statically known
● side-effect free
● bit-precise

Avantages

DBA: Example

Robin David - Phd defense, January 6th65

Example of how an instruction is modeled in the DBA language

Decoding: imul eax, dword ptr[esi+0x14], 7

res32 := @[esi(32) + 0x14(32)] * 7(32)

temp64 := (exts @[esi(32) + 0x14(32)] 64) * (exts 7(32) 64)

OF := (temp64(64) ≠ (exts res32(32) 64))

SF := ⊥

ZF := ⊥

CF := OF(1)

eax := res32(32)

Binsec/SE: Platform architecture [SANER16]

Robin David - Phd defense, January 6th66

Three components of the Dynamic Symbolic Execution engine

main binary
analysis platform

DSE, bb-DSE,
CSML

execution
trace

new
inputs

queries

analysis
results

dynamic analysis
instrumentation

IDA plugin for
result exploitation

Robin David - Phd defense, January 6th67

Pinsec dynamic instrumentation based on Pin 2.14-71313 to generate execution trace

As a protobuf file
containing all the
runtime values

either in time (with
timeout) or in space
(number of instructions)

Tested on Windows 7
and Debian (kernel
officially compatible <
4.0)

All parameters can be
specified in a JSON file
for reproducibility

Allow to patch, registers or
memory addresses at any
moment of execution

Allow to retrieve
function parameters of
known library calls

Provide more interaction
with breakpoints
and value patching (beta)

Track self-modification
occurring during
execution

Streaming instructions
in real-time to Binsec
for online analysis

Execution Trace

Function Stubs

Windows & LinuxLimit Instrumentation

Streaming Trace

On-The-Fly Patching

Polymorphism tracking

Configuration JSON

Remote Control

still lacks many anti-debug/anti-VM countermeasures

Robin David - Phd defense, January 6th68

IDA Pro (from 6.4) plugin to assist reverse-engineering tasks

Goal: Leveraging Binsec features into IDA (triggering analyses and post-processing)

Dynamic disassembly

Binsec remote connection

Allows to disassemble in IDA by
following the execution trace.
(For now, stop on the first
self-modification layer)

Allows to trigger analyses on Binsec
and to retrieve results for
post-analysis data exploitation.

DBA decoding

Reading execution traces

Decode any instruction and
shows graphically the DBA
semantic of the instruction

Load execution trace, generated
by Pinsec, shows runtime values,
allows to vizualize the path taken

on the CFG etc.

Robin David - Phd defense, January 6th69

Dynamic Symbolic Execution engine performing the core execution

Many other DSE engines: Mayhem (ForAllSecure), Triton (QuarksLab), S2E ...

Stub engine

Multiple Solvers
Supports officially, Z3, boolector,
Yices, CVC4 by using the common
SMTLIB2 format

CSML policy engine
generic C/S policy engine

implementing the CSML language
for dynamic modulation of C/S

Configurable JSON
Analyses configurable by a JSON

file (common with Pinsec)

Path selection
for coverage with DSE thanks

to different strategies DFS, BFS,
Min-Call..

allows to over-approximate
side-effect of library call
without executing them

predicate optimizations
Implement various path predicate optimizations
providing a great performances

Optimizations: for path predicate

Robin David - Phd defense, January 6th70

Practical examples of optimizations

Query

Check that the ret
value read in
memory is equal to
ebp0 meant to hold
the ret address

call XXX ...

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 (esp1 - 0x20) ebp1)

esp2 := esp1 - 0x20

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= (select mem1 esp2) ebp0)

Optimizations: for path predicate

Robin David - Phd defense, January 6th71

Practical examples of optimizations

Optimizations:

rebase

call XXX ...

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 (esp1 - 0x20) ebp1)

esp2 := esp1 - 0x20

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= (select mem1 esp2) ebp0)

rebase

Rebase a new symbol
definition by reusing older
definition of it.

Optimizations: for path predicate

Robin David - Phd defense, January 6th72

Practical examples of optimizations

Optimizations:

rebase

call XXX ...

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 (esp1 - 0x20) ebp1)

esp2 := esp1 - 0x20

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= (select mem1 esp2) ebp0)

rebase

Rebase a new symbol
definition by reusing older
definition of it.

esp0

esp0)

Optimizations: for path predicate

Robin David - Phd defense, January 6th73

Practical examples of optimizations

Optimizations:

rebase

call XXX ...

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 (esp1 - 0x20) ebp1)

esp2 := esp0

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= (select mem1 esp0) ebp0)

Read-Over-Write #1

A select in an array can be
replace by the value
written iff performed on
the same logical indexes

Read-Over-Write #1

0x084858 =? (esp1-0x20)
(cannot compare)

Optimizations: for path predicate

Robin David - Phd defense, January 6th74

Practical examples of optimizations

Optimizations:

rebase

call XXX ...

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 (esp1 - 0x20) ebp1)

esp2 := esp0

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= (select mem1 esp0) ebp0)

Read-Over-Write #1

A select in an array can be
replace by the value
written iff performed on
the same logical indexes

Read-Over-Write #1
esp0 == (esp1 - 0x20)
because:
esp1 = esp0 + 0x20
(same base)

Optimizations: for path predicate

Robin David - Phd defense, January 6th75

Practical examples of optimizations

Optimizations:

rebase

call XXX ...

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 (esp1 - 0x20) ebp1)

esp2 := esp0

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= (select mem1 esp0) ebp0)

Read-Over-Write #1

A select in an array can be
replace by the value
written iff performed on
the same logical indexes

Read-Over-Write #1

ebp1

Optimizations: for path predicate

Robin David - Phd defense, January 6th76

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 esp1 ebp1)

esp2 := esp0

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= ebp1 ebp0)

constant propagation

Standard optimization
evaluating all operations
involving only constant
values.

Optimizations: for path predicate

Robin David - Phd defense, January 6th77

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := (select mem0 esp0)

esp1 := esp0 + 0x20

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 esp1 ebp1)

esp2 := esp0

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= ebp1 ebp0)

constant propagation

Standard optimization
evaluating all operations
involving only constant
values.

0x6ff88

0x6ff68)

0x6ff88 ebp1)

0x6ff68

Optimizations: for path predicate

Robin David - Phd defense, January 6th78

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := (select mem0 0x6ff68)

esp1 := 0x6ff88

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 0x6ff88 ebp1)

esp2 := 0x6ff68

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= ebp1 ebp0)

Read-Over-Write #2

For a select, if the index of
the previous store is
disjoint, the select can be
performed on the
previous array.

Read-Over-Write #2

disjoint

Optimizations: for path predicate

Robin David - Phd defense, January 6th79

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := (select mem0 0x6ff68)

esp1 := 0x6ff88

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 0x6ff88 ebp1)

esp2 := 0x6ff68

mov eax,
[804856] eax0 := (select mem1 0x084858)

ret (assert (= ebp1 ebp0)

Read-Over-Write #2

For a select, if the index of
the previous store is
disjoint, the select can be
performed on the
previous array.

Read-Over-Write #2

mem0 0x084858)

Optimizations: for path predicate

Robin David - Phd defense, January 6th80

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := (select mem0 0x6ff68)

esp1 := 0x6ff88

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 0x6ff88 ebp1)

esp2 := 0x6ff68

mov eax,
[804856] eax0 := (select mem0 0x084858)

ret (assert (= ebp1 ebp0)

memory flattening

Optimization removing
the array theory if all
select operation
performed on initial
memory (mem0).

Read-Over-Write #2

memory flattening

all select in
memory performed
on mem0

Optimizations: for path predicate

Robin David - Phd defense, January 6th81

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := (select mem0 0x6ff68)

esp1 := 0x6ff88

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 0x6ff88 ebp1)

esp2 := 0x6ff68

mov eax,
[804856] eax0 := (select mem0 0x084858)

ret (assert (= ebp1 ebp0)

memory flattening

Optimization removing
the array theory if all
select operation
performed on initial
memory (mem0).

Read-Over-Write #2

memory flattening

mem_dw_084858

mem_dw_6ff68

bitvector symbols,
representing
memory cells of
initial memory

Optimizations: for path predicate

Robin David - Phd defense, January 6th82

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := mem_dw_6ff68

esp1 := 0x6ff88

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 0x6ff88 ebp1)

esp2 := 0x6ff68

mov eax,
[804856] eax0 := mem_dw_084858

ret (assert (= ebp1 ebp0)

backward pruning

Remove all unused terms
for the formula to solve

Read-Over-Write #2

memory flattening

backward pruning

unused

made removable by:
rebase + cst prop

removable by:
RoW + mem flat

unused

unused

made removable by:
cst prop + RoW

made removable by:
cst prop

Optimizations: for path predicate

Robin David - Phd defense, January 6th83

Practical examples of optimizations

Optimizations:

rebase

constant propagation

Read-Over-Write #1

call XXX esp0 := 0x6ff68

pop ebp
ebp0 := mem_dw_6ff68

esp1 := 0x6ff88

inc ebp

ebp1 := ebp0 + 1

OF0 := ebp0 +1

SF0 := 0

...

push ebp
mem1 := (store mem0 0x6ff88 ebp1)

esp2 := 0x6ff68

mov eax,
[804856] eax0 := mem_dw_084858

ret (assert (= ebp1 ebp0)

backward pruning

Remove all unused terms
for the formula to solve

Read-Over-Write #2

memory flattening

backward pruning

Optimizations: for path predicate

Robin David - Phd defense, January 6th84

Example of how an instruction is modeled in the DBA language

After optimization

(assert (= ebp1 ebp0)

Without optimization

(assert (= (select mem1 esp2) ebp0)

(mem_dw_6ff68 + 1) mem_dw_6ff68

(select mem0 esp0)(esp1 - 0x20)(store mem0 (esp1 - 0x20) ebp1)

(esp0 + 0x20)(esp0 + 0x20) (ebp0 + 1)

(select mem0 esp0)

Read-Over-Write: Design

Robin David - Phd defense, January 6th85

How we turned a standard RoW quadratic complexity into n (log x)

M₀ M₁ M₂ M₃ M₄ M₅ M₆

@[esp +3]→1 @[esp +4]→0 @[100]→12 @[50]→0 @[40]→5 @[ebp+10]→1

Standard RoW (store-chain)

M₀ M₂ M₅ M₆

3→1

4→0

100→12

50→0

40→5

10→1
@[ebp+]@[esp +] cst

Our optimized RoW (store-map chain)

x (size map)

y
(size store
chain)

M₅[100]

M₅[47]

᭓ (n)

⇒ 12

⇒ M₂[47]

᭓ (y.log(x)) M₅[100]
M₅[47]

⇒ 12
⇒ M₂[47]

if all addresses
constant only
one map

Read-Over-Write: Discussions

Robin David - Phd defense, January 6th86

What are the difference in complexity and time depending on the policy

Benchmark on a path predicate (337k instrs):

Complexity:

The structure can be enhanced to improve the base comparison (in progress)

standard RoW optimized RoW

constant addresses n x m n x log(m)

symbolic addresses n x m n x y x log(z)

m: nb store
n: nb load
y: nb maps
z: max card
 map

standard RoW optimized RoW

constant addresses 79.32s 26.61s

symbolic addresses 40.84s 26.97s

Analysis Combinations

4.

Analysis Combinations

Robin David - Phd defense, January 6th88

The three combinations designed and implemented during the course of my PhD

Use-After-Free
Vulnerability

Discovery

Abstract Interpretation
and Dynamic Symbolic
Execution to detect and

validate UaF

Software Testing
Infeasibility

test requirements

Abstract Interpretation
and Weakest-Precondition

Calculus greybox
combination.

Sparse
Disassembly

Dynamic disassembly
improved by static

disassembly guided by DSE
and obfuscation

data

98% Infeasible
test objectives
detected [ICST15]

CVE-2015-5221
validated in JasPer.
joint work CEA, Verimag
with Josselin Feist

~50% gain on a
real world malware
[S&P17](submitted)

[SSPREW16]

Sparse disassembly: Components
Main components of the sparse disassembly combination

Robin David - Phd defense, January 6th89

static
disassembly
linear, recursive

in Binsec

dynamic
disassembly
instrumentation

in Pinsec

dynamic
symbolic

execution
bb-DSE in
Binsec/SE

partial safe CFG obfuscation
information

new input

execution trace

Goal: enlarging disassembly in a safe and more precise manner

The ultimate goal is to provide a semantic-aware disassembly based on information
computed by symbolic execution

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

Robin David - Phd defense, January 6th90

jl

jmp
eax

jnz

retcall

◦ ◼ + ◼ safe dynamic disassembly
with dynamic jumps

SMC Layer #1

SMC Layer #2

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

Robin David - Phd defense, January 6th91

jl

jmp
eax

jnz

retcall

◦ ◼ + ◼ safe dynamic disassembly
with dynamic jumps

◦ multiple self-modification
segmentation

SMC Layer #1

SMC Layer #2

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

Robin David - Phd defense, January 6th92

jl

jmp
eax

jnz

retcall

◦ ◼ enlarge partial CFG on
genuine conditional jump

◦ ◼ + ◼ safe dynamic disassembly
with dynamic jumps

◦ multiple self-modification
segmentation

SMC Layer #1

SMC Layer #2

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

Robin David - Phd defense, January 6th93

jl

jmp
eax

jnz

retcall

◦ ◼ enlarge partial CFG on
genuine conditional jump

◦ ◼ do not disassemble dead
branch of opaque predicate

◦ ◼ + ◼ safe dynamic disassembly
with dynamic jumps

◦ multiple self-modification
segmentation

SMC Layer #1

SMC Layer #2

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

Robin David - Phd defense, January 6th94

jl

jmp
eax

jnz

retcall

◦ ◼ enlarge partial CFG on
genuine conditional jump

◦ ◼ do not disassemble dead
branch of opaque predicate

◦ ◼ disassemble the target of
tampered ret

◦ ◼ + ◼ safe dynamic disassembly
with dynamic jumps

◦ multiple self-modification
segmentation

SMC Layer #1

SMC Layer #2

Sparse disassembly: Application
Result of applying the combination using obfuscation related data

Robin David - Phd defense, January 6th95

◦ ◼ do not disassemble the
return site of tampered ret

jl

jmp
eax

jnz

retcall

◦ ◼ enlarge partial CFG on
genuine conditional jump

◦ ◼ do not disassemble dead
branch of opaque predicate

◦ ◼ disassemble the target of
tampered ret

◦ ◼ + ◼ safe dynamic disassembly
with dynamic jumps

◦ multiple self-modification
segmentation

96

Sparse disassembly: Results
Disassembly results obtained with sparse disassembly

Benchmark:
● compared the disassembly coverage with Objdump, IDA, Binsec

● a controlled environment (5 toy examples, 5 coreutils from State-of-the-Art)

● opaque predicates, call stack tampering (separately)

On-going work, functionalities not yet implemented (disassembly across waves)

Results: Opaque predicates

sample no
obf perfect IDA Objdump Binsec

(sparse)
gain

(vs IDA)

simple-if 37 185 240 244 185 23.23%

huffman 558 3226 3594 3602 3226 10.26%

mat_mult 249 854 1075 1080 854 20.67%

bin_search 105 833 1110 1115 833 24.95%

bubble_sort 121 1026 1531 1537 1026 32.98%

97

Sparse disassembly: Results
Disassembly results obtained with sparse disassembly

Benchmark:
● compared the disassembly coverage with Objdump, IDA, Binsec

● a controlled environment (5 toy examples, 5 coreutils from State-of-the-Art)

● opaque predicates, call stack tampering (separately)

On-going work, functionalities not yet implemented (disassembly across waves)

Results: Opaque predicates Results: Call stack tampering

sample no
obf perfect IDA Objdump Binsec

(sparse)
gain

(vs IDA)

simple-if 37 83 95 98 83 14.45%

huffman 558 659 678 683 659 2.80%

mat_mult 249 461 524 533 461 12.0%

bin_search 105 207 231 238 207 10.39%

bubble_sort 121 170 182 185 170 6.6%

Case-Studies
Packers & X-Tunnel

5.

Packers: Case-study #1
Evaluation aiming at finding opaque predicates and call stack tampering

Robin David - Phd defense, January 6th99

Looking for (with bb-DSE):
● opaque predicates
● call stack tampering
● record of self-modification layers

Evaluation of 33 packers
(packed with a stub binary)

Goal:
● perform a systematic and fully

automated evaluation of BB-DSE on
packers (for robustness, scale etc)

Why packers ?
● realistic protections
● do contain obfuscation
● usually first protection layer

(if not the single)

Packers: Analysis results

100

◦ Several have no such obfuscation, NeoLite, nPack, Packman, PE Compact ….
◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….
◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

packers
trace
len. #proc #th #SMC

opaque predicates
OK OP

call stack tampering
OK tamper

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

Packers: Analysis results

101

◦ Several have no such obfuscation, NeoLite, nPack, Packman, PE Compact ….
◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….
◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

packers
trace
len. #proc #th #SMC

opaque predicates
OK OP

call stack tampering
OK tamper

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

The technique scale
on significant traces

Packers: Analysis results

102

◦ Several have no such obfuscation, NeoLite, nPack, Packman, PE Compact ….
◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….
◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

packers
trace
len. #proc #th #SMC

opaque predicates
OK OP

call stack tampering
OK tamper

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

The technique scale
on significant traces

Many true positives.
Some packers are
using it intensively

Packers: Analysis results

103

◦ Several have no such obfuscation, NeoLite, nPack, Packman, PE Compact ….
◦ Several packers still evade the DBI, Armadillo, BoxedApp, EP Protector, VMProtect….
◦ 3 reached the 10M instructions limit, Enigma, svk, Themida

packers
trace
len. #proc #th #SMC

opaque predicates
OK OP

call stack tampering
OK tamper

ACProtect v2.0 1.8M 1 1 4 83 159 0 48

ASPack v2.12 377K 1 1 2 168 24 11 6

Crypter v1.12 1.1M 1 1 1 399 24 125 78

Expressor 635K 1 1 1 81 8 14 0

FSG v2.0 68k 1 1 1 24 1 6 0

Mew 59K 1 1 1 28 1 6 1

PE Lock 2.3M 1 1 6 95 90 4 3

RLPack 941K 1 1 1 46 2 14 0

TELock v0.51 406K 1 1 5 5 2 3 1

Upack v0.39 711K 1 1 2 41 1 7 1

The technique scale
on significant traces

Many true positives.
Some packers are
using it intensively

Packers using ret to
perform the final tail
transition to the
entrypoint

Packers: Tricks and patterns found
Several of the tricks detected by the analysis

Robin David - Phd defense, January 6th104

OP in ACProtect

1018f7a js 0x1018f92

1018f7c jns 0x1018f92

(and all possible variants
ja/jbe, jp/jnp, jo/jno..)

OP in Armadillo

10330ae xor ecx, ecx

10330b0 jnz 0x10330ca

CST in ASPack

10043a9 mov [ebp+0x3a8], eax

10043af popa

10043b0 jnz 0x10043ba

Enter SMC Layer 1

10043ba push 0

10043bf ret
CST in ACProtect

1001000 push 16793600

1001005 push 16781323

100100a ret

100100b ret

CST in ACProtect

1004328 call 0x1004318

1004318 add [esp], 9

100431c ret

Packers: Tricks and patterns found
Several of the tricks detected by the analysis

Robin David - Phd defense, January 6th105

OP in ACProtect

1018f7a js 0x1018f92

1018f7c jns 0x1018f92

(and all possible variants
ja/jbe, jp/jnp, jo/jno..)

OP in Armadillo

10330ae xor ecx, ecx

10330b0 jnz 0x10330ca

CST in ASPack

10043a9 mov [ebp+0x3a8], eax

10043af popa

10043b0 jnz 0x10043ba

Enter SMC Layer 1

10043ba push 0

10043bf ret

0x10043bb
at runtime

0x10011d7
CST in ACProtect

1001000 push 16793600

1001005 push 16781323

100100a ret

100100b ret

CST in ACProtect

1004328 call 0x1004318

1004318 add [esp], 9

100431c ret

Packers: Tricks and patterns found
Several of the tricks detected by the analysis

Robin David - Phd defense, January 6th106

OP in ACProtect

1018f7a js 0x1018f92

1018f7c jns 0x1018f92

(and all possible variants
ja/jbe, jp/jnp, jo/jno..)

OP in Armadillo

10330ae xor ecx, ecx

10330b0 jnz 0x10330ca

CST in ASPack

10043a9 mov [ebp+0x3a8], eax

10043af popa

10043b0 jnz 0x10043ba

Enter SMC Layer 1

10043ba push 0

10043bf ret

0x10043bb
at runtime

0x10011d7
CST in ACProtect

1001000 push 16793600

1001005 push 16781323

100100a ret

100100b ret

CST in ACProtect

1004328 call 0x1004318

1004318 add [esp], 9

100431c ret

ZF = 0

10040fe: mov bl, 0x0
10041c0: cmp bl, 0x0
1004103: jnz 0x1004163

1004163: jmp 0x100416d
[...]

1004105: inc [ebp+0xec]
[...]

ZF = 1

OP (decoy) in ASPack

Packers: Tricks and patterns found
Several of the tricks detected by the analysis

Robin David - Phd defense, January 6th107

OP in ACProtect

1018f7a js 0x1018f92

1018f7c jns 0x1018f92

(and all possible variants
ja/jbe, jp/jnp, jo/jno..)

OP in Armadillo

10330ae xor ecx, ecx

10330b0 jnz 0x10330ca

CST in ASPack

10043a9 mov [ebp+0x3a8], eax

10043af popa

10043b0 jnz 0x10043ba

Enter SMC Layer 1

10043ba push 0

10043bf ret

0x10043bb
at runtime

0x10011d7
CST in ACProtect

1001000 push 16793600

1001005 push 16781323

100100a ret

100100b ret

CST in ACProtect

1004328 call 0x1004318

1004318 add [esp], 9

100431c ret

ZF = 0

10040fe: mov bl, 0x0
10041c0: cmp bl, 0x0
1004103: jnz 0x1004163

1004163: jmp 0x100416d
[...]

1004105: inc [ebp+0xec]
[...]

ZF = 1

OP (decoy) in ASPack

0x10040ff
at runtime

0x1

X-Tunnel: Case-study #2
Introduction of the Sednit group, alleged attacks, methods and techniques used

Robin David - Phd defense, January 6th108

2015 20162011-2014

NATO, EU institution

sandbox escape win32k.sys
Flash + Windows 10

Nicknames: APT28, Fancy Bear, Sofacy, Sednit, Pawn Storm

DNC Democratic
National Committee

(US)Political Activists
(Russia)

TV5 Monde
(France)Bundestag

(Germany)

CVE-2015-1701
Windows (LPE)

CVE-2015-2424
Office (RCE)

CVE-2015-[2590,4902]
Java (x2)

CVE-2015-[3043,7645]
Flash (x2)

2008

First seen

Ministry of Defense
(France) Government

Officials
(Poland)

X-Tunnel: Case-study #2
Introduction of the Sednit group, alleged attacks, methods and techniques used

Robin David - Phd defense, January 6th109

2015 20162011-2014

NATO, EU institution

sandbox escape win32k.sys
Flash + Windows 10

Nicknames: APT28, Fancy Bear, Sofacy, Sednit, Pawn Storm

Tools
Eco-sy
stem

0-days

Mac OSX trojan

X-Agent / X-Tunnel

Droppers

DNC Democratic
National Committee

(US)Political Activists
(Russia)

TV5 Monde
(France)Bundestag

(Germany)

CVE-2015-1701
Windows (LPE)

CVE-2015-2424
Office (RCE)

CVE-2015-[2590,4902]
Java (x2)

CVE-2015-[3043,7645]
Flash (x2)

Bootkit/Rootkit

Downloader USB C&C

2008

First seen

Ministry of Defense
(France) Government

Officials
(Poland)

X-Tunnel: Proxy component
What it is, features and samples description

Robin David - Phd defense, January 6th, 2017110

Sample #0 Sample #1 Sample #2

Hash 42DEE3[..] C637E0[...] 99B454[...]

Size 1.1 Mo 2.1 Mo 1.8 Mo

Creation date 25/06/2015 02/07/2015 02/11/2015

#functions 3039 3775 3488

#instructions (IDA) 231907 505008 434143

X-Agent

C&C

X-Tunnel

❌

Features: Encapsulate any TCP-based traffic into a RC4 cipher
stream embedded into a TLS connection

What is it: Ciphering proxy allowing X-Agent(s) not able to
reach the C&C directly to connect to it through X-Tunnel

A huge thanks to Joan Calvet

Where: Used in at least Bundestag6 & DNC7,8 attacks

X-Tunnel: Proxy component
What it is, features and samples description

Robin David - Phd defense, January 6th, 2017111

Sample #0 Sample #1 Sample #2

Hash 42DEE3[..] C637E0[...] 99B454[...]

Size 1.1 Mo 2.1 Mo 1.8 Mo

Creation date 25/06/2015 02/07/2015 02/11/2015

#functions 3039 3775 3488

#instructions (IDA) 231907 505008 434143

X-Agent

C&C

X-Tunnel

❌

Features: Encapsulate any TCP-based traffic into a RC4 cipher
stream embedded into a TLS connection

What is it: Ciphering proxy allowing X-Agent(s) not able to
reach the C&C directly to connect to it through X-Tunnel

A huge thanks to Joan Calvet

Widely
obfuscated
with opaque
predicates

505008 434143231907

Where: Used in at least Bundestag6 & DNC7,8 attacks

X-Tunnel: Questions

www.yourwebsitename.com112

Q1

Can we remove
the obfuscation?

Q2

Are there new
functionalities?

Experimental issues intended to be solved in this use-case

X-Tunnel: Analysis
Analysis process and different steps followed

Robin David - Phd defense, January 6th113

Goal: Detect and remove all opaque predicates to extract a clean CFG

fully static analysis
Analysis context

because:
⚫ no self-modification
⚫ need to contact C&C
⚫ need to wait clients

1. Opaque predicates
detection

with bb-DSE and IDAsec

4. Reduced CFG
extraction

using data computed
by previous steps

3.Dead and
spurious instruction

removal
with liveness propagation

2. High-level
predicate recovery
to identify predicates

used

High-level predicate recovery
Synthesis and extraction of the different opaque predicates used

Robin David - Phd defense, January 6th, 2017114

Behavior: Computes the dependency, generates the predicate

mov esi, dword_5D7A84 (define-fun esi2 (load32_at memory #x005d7a84))

mov edi, dword_5D7A80 (define-fun edi0 (load32_at memory #x005d7a80))

jz loc_44D9FA (assert (not (= ZF2 #b1)))

imul esi, esi (define-fun esi3 (bvmul esi2 esi2))

imul eax, esi, 7 (define-fun eax2 (bvmul esi3 #x00000007))

dec eax (define-fun eax3 (bvsub eax2 #x00000001))

imul edi, edi (define-fun edi1 (bvmul edi0 edi0))

cmp eax, edi (define-fun res328 (bvsub eax3 edi1))
(define-fun ZF4 (bvcomp res328 #x00000000))

jnz loc_44D922 (assert (= ZF4 #b1))

High-level predicate recovery
Synthesis and extraction of the different opaque predicates used

Robin David - Phd defense, January 6th, 2017115

Behavior: Computes the dependency, generates the predicate

mov esi, dword_5D7A84 (define-fun esi2 (load32_at memory #x005d7a84))

mov edi, dword_5D7A80 (define-fun edi0 (load32_at memory #x005d7a80))

jz loc_44D9FA (assert (not (= ZF2 #b1)))

imul esi, esi (define-fun esi3 (bvmul esi2 esi2))

imul eax, esi, 7 (define-fun eax2 (bvmul esi3 #x00000007))

dec eax (define-fun eax3 (bvsub eax2 #x00000001))

imul edi, edi (define-fun edi1 (bvmul edi0 edi0))

cmp eax, edi (define-fun res328 (bvsub eax3 edi1))
(define-fun ZF4 (bvcomp res328 #x00000000))

jnz loc_44D922 (assert (= ZF4 #b1))
((bvsub (bvmul (bvmul esi2 esi2) 7) 1) ≠ (bvmul edi0 edi0) ↦ 7x2 - 1 ≠ y2

X-Tunnel: Results
Results in terms of opaque predicates detections and false positive/negative

Robin David - Phd defense, January 6th116

#cond jmp bb-DSE Synthesis Total

Sample #1 34505 57m36 48m33 1h46m

Sample #2 30147 50m59 40m54 1h31m

3% 3%

Sample
#1

Sample
#2

◼ Ok ◼ Opaque predicate ◼ False positive ◼ OP missed

2 predicates synthesized: 7y2 - 1 ≠ x2 ≠ y2 + 32
x2 + 1

possible
signature

Analysis: Obfuscation distribution
Obfuscation accross functions in both binaries

Robin David - Phd defense, January 6th, 2017117

◼ C637 (Sample #1) ◼ 99B4 (Sample #2)

Goal: Compute the percentage of conditional jump obfuscated within a
function

Allow to narrow the
in-depth analysis on
these functions
(~500 more likely of
interest)

Many not
obfuscated
functions
(statically
linked library
OpenSSL…)

X-Tunnel: Code coverage
Results of the liveness propagation and identification of spurious instructions

Robin David - Phd defense, January 6th118

C637 Sample #1 99B4 Sample #2

#total instruction 505,008 434,143
#alive +279,483 +241,177

#dead -121,794 -113,764

#spurious -103,731 -79,202

#delta with
sample #0 47,576 9,270

In both samples the difference with the un-obfuscated binary is
very low (probably due to some noise)

X-Tunnel: Reduced CFG extraction
Results of extracting a CFG without the obfuscation

Robin David - Phd defense, January 6th119

Original CFG

X-Tunnel: Reduced CFG extraction
Results of extracting a CFG without the obfuscation

Robin David - Phd defense, January 6th120

Tagged CFG

◼ Alive
◼ Spurious
◼ Dead

X-Tunnel: Reduced CFG extraction
Results of extracting a CFG without the obfuscation

Robin David - Phd defense, January 6th121

Extracted CFG

X-Tunnel: Conclusion
Reversing conclusion and future work opening

Robin David - Phd defense, January 6th, 2017122

New functionalities ?

Manual checking of difference did not appeared
to yield significant differences or any new
functionalities…

[RECON 2016][Botconf 2016][CCC 2016]

Next:

● in-depth graph similarity (Bindiff) to find new functionalities)

● integration as an IDA processor module (IDP) ?

Obfuscation: Difference with O-LLVM (like)

● some predicates have far dependencies (use local variable)

● some computation reuse between opaque predicates

For more: Visiting the Bear Den, Joan Calvet, Jessy Campos, Thomas Dupuy

Conclusion

6.

Conclusion: Contributions
General conclusion about contributions provided by this thesis

Robin David - Phd defense, January 6th124

DSE for
obfuscation

C/S policies, CSML,
Backward Bounded

DSE

#3

#4

#1

#2

Implementation
in Binsec

DSE engine in Binsec/SE,
optimizations, IDASec,

Pinsec network
interaction etc.

Analysis
Combinations

Source software Testing,
UaF detection, Sparse

disassembly Case-Studies
Large scale-automated

analysis of packers,
X-Tunnel deobfuscation

Main: Practical approaches for formal analysis-based deobfuscation

Conclusion: Publications
Publications submitted as part of my thesis fulfillment

Robin David - Phd defense, January 6th

125

Sound and Quasi-Complete Detection of Infeasible Test
Requirements, Sébastien Bardin, Mickaël Delahaye, Robin David, Nikolai
Kosmatov, Mike Papadakis and Yves Le Traon
8th IEEE International Conference on Software Testing

ICST 2015
Graz, Austria

Binsec/SE: A Dynamic Symbolic Execution Toolkit for
Binary-Level Analysis, Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent
Mounier, Josselin Feist, Marie-Laure Potet and Jean-Yves Marion
23rd International Conference on Software Analysis, Evolution and Reengineering

SANER 2016
Osaka, Japan

Specification of Concretization and Symbolization Policies in
Symbolic Execution, Robin David, Sébastien Bardin, Josselin Feist,
Marie-Laure Potet, Thanh Dinh Ta, Jean-Yves Marion
25th International Symposium on Software Testing and Analysis

ISSTA 2016
Saarbrücken,

Germany

Finding the Needle in the Heap: Combining Static Analysis and
Dynamic Symbolic Execution to Trigger Use-After-Free, Josselin
Feist, Sébastien Bardin, Laurent Mounier, Robin David, Marie-Laure Potet
6th Software Security, Protection and Reverse Engineering Workshop

SSPREW 2016
Los Angeles,

USA

Backward-Bounded DSE: Targeting Infeasibility Questions on
Obfuscated Codes, Robin David, Sébastien Bardin and Jean-Yves Marion
(submitted S&P 17)

125

Conclusion: Perspectives
Near and long term improvements both from research and implementation perspectives

Robin David - Phd defense, January 6th126

Malware analysis:

● exploring tradeoff between comprehension & detection

● more semantic-aware disassembly (to get rid of obfuscation)

● combination with control-flow (graph-based) signatures (Jean-Yves Marion)

● combination with data semantic summary signatures (Arun Lakhotia)

Goal : Obtaining more accurate signatures

Binary analysis & Deobfuscation futur work:

● more obfuscations: VM, conditional self-modification, DGA etc..
(with a similar approach)

● DSE robustness: initial state, taint, path predicate optimizations

HUGE THANKS to the jury,
CEA co-workers, LORIA, family and friends

THANK YOU !

Thanks to all the people I worked with during my thesis:

Link references

Robin David - Phd defense, January 6th, 2017128

1. IBM Security, 2016 - Ponemon Cost of Data Breach Study,
https://www-03.ibm.com/security/data-breach/

2. Intel Security, June 2014 - Net Losses: Estimating the Global Cost of Cybercrime,
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf

3. Hamilton Place Strategies, Feb 2016 - Cybercrime Costs More Thank You Think,
http://www.hamiltonplacestrategies.com/sites/default/files/newsfiles/HPS%20Cybercrime2_0.
pdf

4. Panda Security, Jan 2016 - 27% of all Recorded Malware Appeared in 2015,
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-i
n-2015/

5. Symantec, April 2016 - Internet Security Threat Report,
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

6. Netzpolitik, June 2015 - Digital Attack on German Parliament: Investigative Report on
the Hack of the Left Party Infrastructure in Bundestag
https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-report-on-the-h

ack-of-the-left-party-infrastructure-in-bundestag/
7. CrowdStrike June 2016 - Bears in the Midst: Intrusion into the Democratic National

Committee,
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/

8. NCCIC, FBI, Dec 2016 - GRIZZLY STEPPE – Russian Malicious Cyber Activity,
https://www.us-cert.gov/sites/default/files/publications/JAR_16-20296A_GRIZZLY%20STEPPE-2

016-1229.pdf

https://www-03.ibm.com/security/data-breach/
http://www.mcafee.com/us/resources/reports/rp-economic-impact-cybercrime2.pdf
http://www.hamiltonplacestrategies.com/sites/default/files/newsfiles/HPS%20Cybercrime2_0.pdf
http://www.hamiltonplacestrategies.com/sites/default/files/newsfiles/HPS%20Cybercrime2_0.pdf
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
http://www.pandasecurity.com/mediacenter/press-releases/all-recorded-malware-appeared-in-2015/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-report-on-the-hack-of-the-left-party-infrastructure-in-bundestag/
https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-report-on-the-hack-of-the-left-party-infrastructure-in-bundestag/
https://www.crowdstrike.com/blog/bears-midst-intrusion-democratic-national-committee/
https://www.us-cert.gov/sites/default/files/publications/JAR_16-20296A_GRIZZLY%20STEPPE-2016-1229.pdf
https://www.us-cert.gov/sites/default/files/publications/JAR_16-20296A_GRIZZLY%20STEPPE-2016-1229.pdf

