
PASTIS: A Collaborative Approach to Combine
Heterogeneous Software Testing Techniques

1st Robin David
Quarkslab

Paris, France
rdavid@quarkslab.com

2nd Richard Abou Chaaya
Quarkslab

Paris, France
rabouchaaya@quarkslab.com

3rd Christian Heitman
Quarkslab

Buenos Aires, Argentina
cheitman@quarkslab.com

Abstract—The fuzzing research field experienced outstanding
advances over the past decade, making it a very effective
approach for software testing. Dynamic Symbolic Execution
(DSE) also called whitebox fuzzing is another approach that also
evolved significantly and has the advantage of being able to solve
very complex path conditions. Given fuzzing advances, knowing
whether DSE is still relevant to help improving fuzzing coverage
is an open research question. This paper aims at answering this
question by empirically studying software testing techniques in a
collaborative environment, and especially combining fuzzing and
DSE. We show that in some cases DSE helps uncover some code
locations not reached by fuzzers or can speed up the discovery
of such coverage. We propose a combination of fuzzing and DSE
into an ensemble fuzzing framework called PASTIS that helps in
circumventing engines inner-working discrepancies. In this line,
we propose a few DSE optimizations to maximize its ability to
provide relevant inputs to fuzzers. One of them is a coverage
strategy called prefixed-edge, which is an optimization over edge
coverage. Finally, we show the advantages and roadblocks one
can meet in trying to combine heterogeneous fuzzers and give
insights on how to do it more efficiently.

Index Terms—Software Testing, Greybox Fuzzing, Dynamic
Symbolic Execution, Ensemble Fuzzing

I. INTRODUCTION

Context: Software testing is now crucial to uncover bugs
and vulnerabilities. To that end, multiple automated testing
techniques like fuzzing are used. This approach has been
extensively studied in the literature [1], [2] and improved
over the last few years. Fuzzing relies on executing as many
iterations as possible of the PUT (Program Under Test) over
different inputs generated with pseudo-random mutations and
possibly with a the help of structure model or grammar. Both
execution and input generation algoritms have been improved
over time to explore deeper program states.

Dynamic Symbolic Execution (DSE) is a formal approach
also used for program exploration and testing. Advances
performed in this research area made it a functional approach
used in state-of-the-art software testing tools. DSE principle is
to model precisely each instruction’s side-effects to be able to
track input propagation in the program and express branching
conditions as first-order logic formulas.

Problem: While fuzzing is empirically effective, it tends
to cover shallower states. In comparison, DSE is slower, but
is theoretically able to cover deeper states by solving complex
branching conditions or complex code constructs [3]. Given

the recent fuzzing improvements and the slow nature of DSE,
one may wonder if using DSE can improve PUT coverage
compared to fuzzing. This raises the first research question
RQ1: Can DSE help a fuzzing engine in a collaborative
environment? By extension, their approach being extensively
very different, it is unclear whether fuzzing and DSE can
work together efficiently and whether this combination may
outperform both approaches used independently. Therefore the
second research question is RQ2: Can a collaborative approach
like ensemble fuzzing reach better coverage than the sum of
its parts?

Intuition: Our approach is based on two intuitions com-
monly shared in the software testing research field. First, no
fuzzer or input generation algorithm is universally better on
any kind of target due to the wide range of software and the
contrasting input format that can be encountered. Second, in
a DSE, the SMT solving phase is very costly and should be
avoided whenever possible. This implies that the DSE should
not attempt to solve a branching condition if it has already
been covered by another test engine.

Goal and Challenges: The goal is to combine greybox
fuzzing and DSE to leverage their respective strengths and
reach better coverage than either of these approaches on its
own, or at least, obtaining the same coverage faster. Challenges
are threefold. First, one needs to deal with the implementation
discrepancies of various engines, such as input formats and
execution speed. Second, input generation throughput is a chal-
lenge as input flooding might alter normal behavior of engines.
The last challenge is to combine them in an asynchronous
manner so that no one is blocking or slowing down the others.

Our Approach: It combines heterogeneous test engines
by solely sharing test cases (inputs). Each engine then decide
whether to drop it or not. If the input triggers a new pro-
gram behavior regarding engine’s coverage metric the input
is kept, otherwise it is discarded. Being significantly slower
than fuzzing, DSE should replay each input it receives at a
satisfying speed to update its coverage and deciding whether
to keep the input. We designed an ensemble fuzzer combining
greybox fuzzing and whitebox fuzzing (DSE) built around a
broker that performs seed sharing and aggregates the resulting
corpus and data.



Contributions: Ensemble fuzzer with seed synchroni-
sation have already been studied and implemented in the
literature. Nonetheless, few tries to combine greybox fuzzing
and DSE which are working differently and at different paces.
Furthermore, very few of them study the practical impact
and issues encountered when combining them. This main
contributions of our work are as follow:

• we propose Pastis an open-source ensemble fuzzer
framework combining disparate testing approaches in a
fully asynchronous manner. Designed to be flexible, any
software testing engine can be integrated as long as it
produces tests-cases and is able to absorb arbitrary ones
dynamically1;

• we introduce TritonDSE a whitebox fuzzing (DSE)
framework based both on Triton, for symbolic execution,
and QBDI, a Dynamic Binary Instrumentation tool, for
test-case replay. Through experiments, we tuned its con-
figuration parameters (solving strategy, coverage metric,
whether to explore symbolic pointers, etc.) for improved
performance in the context of ensemble fuzzing;

• we propose a new coverage metric called prefixed-edge
which is as precise as edge, but more scalable as it saves
worthless SMT queries;

• we show that ensemble fuzzing either in half-duplex (seed
aggregation) or full-duplex (seed sharing across engines)
can outperform fuzzers used alone, especially on short-
term campaigns;

• we empirically show that DSE can sometimes help grey-
box fuzzers by unlocking them on specific branches, thus
improving coverage or reaching such a coverage faster;

• we conducted an experimental study of the performance
impact of ensemble fuzzing showing its strengths but also
its weaknesses, as it can drive the coverage discovery
down by means of input overproduction. It debunks the
intuition that maximal seed sharing necessarily leads to
better coverage.

II. BACKGROUND

A. Fuzzing

Fuzzing, and more especially greybox fuzzing [4], is a
testing technique composed of two main components. First,
an instrumentation mechanism aims at obtaining feedback
about the program’s execution. It can be inserted at compile-
time if source code is available or at runtime and usually
provides coverage as feedback. Hence, these fuzzers are
deemed coverage-guided as they aim at maximizing coverage.
This feedback is also used by the second component; the
input generation algorithm to drive the fuzzing process. It
can be mutational, which means inputs are generated by
applying pseudo-random mutations or it can use some format
description like a grammar or a model to create new test cases.
In this latter case the generation is called structured. The input

1The core of Pastis is simply a network message exchange format, it
could theoretically be extended to any programming language or instrumen-
tation technique

Fig. 1: Pastis ensemble fuzzer overview

generation algorithm uses execution feedback to further mutate
a promising input. Most greybox fuzzers are coverage-guided
so they keep mutating inputs that generate new coverage. The
fuzzing algorithm is an infinite loop that generates new test
cases and provides them as input to the instrumented target.

B. Dynamic Symbolic Execution

Dynamic Symbolic Execution, also called whitebox
fuzzing [5], is a testing technique working on both a concrete
state and a symbolic state. The former represents the con-
crete values of registers and memory cells during execution.
The latter is their symbolic representation whose values are
computed by means of evaluating instructions through their
semantic modeling, usually performed using an Intermediate
Representation (IR). In this context, symbolic values are the
bytes of the current input in memory.

By evaluating a program over symbolic input, the DSE
follows a path and constructs a path predicate which is
the conjunction of logical expressions representing branching
conditions expressed as constraints over the symbolic variables
on this path. In order to cover new branches, the DSE negates
these constraints by encoding them as first-order logic formula,
usually on bitvectors. Each formula (query) is provided to an
SMT solver, which, if satisfiable, provides a model represent-
ing a new input satisfying all the conditions. By negating and
solving every uncovered branching condition a DSE is able to
cover the program.

Some symbolic execution engines like KLEE [6] work on
the LLVM-IR obtained usually from source code, while most
engines, like Triton [7], angr [8] or Maat [9] work directly at
binary-level.

III. OUR APPROACH

A. Overview

Our ensemble fuzzer is designed around a central compo-
nent, the broker, holding the PUT variants instrumented for
each engine, as well as the initial corpus. When a test engine
connects to the broker, it announces its underlying fuzzing
engine. Consequently, the broker sends it the appropriate PUT
variant and the initial corpus. Figure 1 shows the general
architecture. Once running, an engine can submit test-cases
to the broker along with its type: input, crash or hang.

The ensemble fuzzer can operate in two main modes:



•
→
∪, half-duplex mode, where the broker aggregates test-
cases but does not forward them to any other engine.
The resulting coverage is thus the union coverage of
individual engines.

•
⇄
∩, full-duplex mode, where the broker shares submitted
test-cases with all the other engines. The final coverage
is consequently the result of engines collaborating with
one another.

In both modes, engines are treated equally regardless of their
underlying inner workings. To that end, each engine has to
decide whether to keep or discard an input depending on its
own coverage metric [10].

The resulting campaign coverage is computed a-posteriori
on the corpus generated. While it could rely on gcov or
llvm-profile, coverage is computed using QBDI [11]. All
design choices of the ensemble fuzzer have been done with
the closed-source scenario in mind.

B. Implementation

The algorithm has been implemented in Pastis, an en-
semble fuzzing framework. Its articulated around libpastis, a
Python library providing network communication functional-
ities between components. It uses a message queuing library
called ZeroMQ2. Another component is the broker, which
relies on libpastis, acts as a server to manage the fuzzing
campaign.

Adding support for a given engine requires implementing a
driver in Python making use of libpastis to communicate with
the broker. The driver should first connect to the broker and
to launch the underlying fuzzer with the appropriate options
received by the broker. Once running, it should transmits
inputs received from the broker to the fuzzer and vice-versa.

Our tests focus on Linux targets, however, this framework
can target Windows or MacOS applications as long as en-
gines work on these platforms. The current version support
AFL++ 4.02a, Honggfuzz 2.5 and TritonDSE 0.1. AFL++
supports a distributed mode to receive new inputs. Nonetheless
Honggfuzz does not have this feature, so it has been patched
to support dynamic insertion of new inputs. For that, the
reading of dynamic input directory has been introduced in the
global fuzzing loop so that Honggfuzz checks periodically the
directory for new inputs. The whole Pastis framework with
all its drivers are now open-source3.

C. TritonDSE

TritonDSE relies on the existing Triton framework [7] which
is a low-level DSE engine library which works on a single
trace for which the user has to provide every instruction to
execute symbolically. However, it does not provide all the
expected functionalities of a fully-featured whitebox fuzzer.
To that end, TritonDSE has been developed at the top. While
it could have been made concolic by combining it with a
DBI like QBDI, the initial concrete state is instantiated by

2https://zeromq.org/
3https://github.com/quarkslab/pastis

manually loading the program and its libraries. All operating
system interactions are either modeled with symbolic stubs or
skipped. As a consequence, TritonDSE can generate unsound
results. This framework provides the following features:

• program loading: sole executable or also with its shared
libraries using cle4;

• symbolic emulation until reaching a halt instruction or a
libc exit() call;

• automatic solving of uncovered branching conditions,
thanks to the coverage strategy among block B, edge E ,
prefixed-edge PE or path P;

• automatic generation of new inputs with solved branching
conditions;

• enumeration of symbolic reads, writes or symbolic dy-
namic jumps;

• memory segmentation with permissions with a basic
allocator.

This component is now also available as a standalone open-
source project 5.

D. Prefixed-Edge Strategy: PE
This coverage strategy is based on the observation that:

it is irrelevant to try solving twice an edge twice if the
path leading to that edge is the same, as formulas will be
identical. However, in pure edge coverage, the algorithm must
try to solving whenever an uncovered edge is reached in the
execution trace. In PE strategy, the path taken to reach an
edge is also considered to decide to solve or not. Therefore, if
an edge is reached via a path previously taken and for which
an unsatisfiable solving was already attempted, no duplicate
solving will be done. Once the edge is solved, no further
attempt will be performed even though the edge might be
reached by a new prefix path. This strategy is not meant
to obtain a more granular coverage, but to optimize solving
attempts. This strategy is evaluated in benchmarks V-A.

IV. EXPERIMENTAL SETTINGS

A. Dataset

We chose at random a set of 8 targets for benchmarking:
harfbuzz, freetype, libjpeg, libpng, vorbis, openthread and zlib
taken from fuzzbench [12], a reference benchmark. The last
target is CycloneTCP6 a TCP/IP stack used in embedded
systems and IoT.

The harness built for CycloneTCP is a simple HTTP server
with a basic stack configuration (IPv4, ARP, ICMP, TCP,
DHCP) representative of configurations that can be found
in many embedded and IoT devices. The input format is a
sequence of ethernet frames separated by a marker. While the
stack normally involves multiple threads, the harness breaks
down the execution to a single-threaded application. The input
is read on stdin where each frame is split and injected in
the stack sequentially.

4https://github.com/angr/cle
5https://github.com/quarkslab/tritondse
6https://www.oryx-embedded.com/products/CycloneTCP

https://zeromq.org/
https://github.com/quarkslab/pastis
https://github.com/angr/cle
https://github.com/quarkslab/tritondse
https://www.oryx-embedded.com/products/CycloneTCP


Benchmarks involve 3 engines: AFL++, Honggfuzz and
TritonDSE. The targets are compiled for the three engines.
TritonDSE use the “vanilla” target without instrumentation.

B. Benchmark Methodology

Benchmarks are split in two phases. Benchmark #1 aims
at selecting the best preset for TritonDSE in order to make it
as compelling as possible for benchmark #2 which performs
ensemble fuzzing tests with greybox fuzzers. Coverage is the
reference metric to compare test engines performances [12]
and serves as basis to evaluate results.

V. BENCHMARK #1: HYPERPARAMETER SELECTION

These benchmarks run TritonDSE sole instances with dif-
ferent configuration in 8 hours campaigns, on a 2.452 Ghz
processor and 126Gb of RAM.

A. benchmark #1a: Coverage Strategy

The benchmark aims at selecting the best coverage strategy
and more specifically, the most cost-efficient in terms of SMT
solving and corpus size. In the benchmark, four TritonDSE
instances were launched using the four different coverage
strategies implemented: block B, edge E , prefixed-edge PE
and path P . Results are shown in Table I. The coverage column
shows the number of edges discovered by the exploration
in addition to the ones generated by the initial corpus. The
input column shows the number of test-cases generated and
by extension the number of SAT formulas.

Coverage #Input (SAT)

base B E PE P B E PE P

cyclone 844 +275 +305 +304 +223 105 125 126 26720

freetype 2630 +545 +633 +569 +523 113 136 136 26864

harfbuzz 3017 +222 +335 +312 +429 107 236 189 4209

libjpeg 772 +60 +66 +66 +66 104 128 129 18246

libpng 335 +75 +95 +96 +326 28 42 43 29835

openthread 1095 +0 +0 +0 +0 0 0 0 0

vorbis 883 +117 +136 +137 +95 25 45 46 57669

zlib 66 +19 +19 +19 +21 3 3 3 4

Total 9642 10955 11231 11145 11325 485 715 672 163547

TABLE I: Benchmark #1a: Coverage Strategy

For most targets, P strategy has not finished executing every
input at the end of the campaign resulting in lower coverage.
This strategy generates a very large amount of inputs for scarce
edge coverage improvement. This strategy is thus impractical
in an ensemble fuzzing context. Then PE provides very similar
results than E . Its coverage is significantly better for harfbuzz.
While not visible on table, PE reduces the number of SMT
queries by 34% on average compared to E . Given the time
overhead this implies, the PE is chosen as the default coverage
metric.

B. benchmark #1b: SMT solving

The SMT solver used in a DSE engine plays an important
role as a significant amount of time is spent solving queries.
The Triton library supports Z3 [13] and Bitwuzla [14] which

both support the QF_BV logic. This benchmark aims at
evaluating the most suitable solver. No solving timeout is set
for this study. Table II shows the results obtained. The “avg
query” column gives the average solving time for queries.

SAT UNSAT avg query (s)
Z3 Bitwuzla Z3 Bitwuzla Z3 Bitwuzla

cyclone 109 127 5423 4281 0.42 0.21
freetype 126 136 415 559 0.41 0.17
harfbuzz 213 205 7175 8040 3.98 3.54
libjpeg 132 129 3549 1783 8.86 0.28
libpng 46 43 161 180 0.03 0.00
openthread 0 0 17 17 0.02 0.00
vorbis 41 46 1215 1731 0.56 0.18
zlib 4 3 12 7 0.03 0.01

TABLE II: Benchmark #1b: SMT solving

Results presented in Table II show a great target disparity in
terms of solving as multiple targets explore the possible paths
quickly while others like harfbuzz, make both solvers spending
98% of the whole campaign time solving queries (∼7h50m).
Bitwuzla outperforms significantly Z3. The average query time
is almost twice as fast. The resulting solving time ranges from
2x faster to 54x on libjpeg. While both solvers might provide
similar results on smtlib2 files, APIs are rather different and
Triton spends a significant amount of time converting formulas
into Z3 structures, which is taken into account in the solving
time.

Given the results, Bitwuzla is selected as the default solver
for the remaining experiments.

C. benchmark #1c: Symbolic Exploration

A DSE algorithm explores a program by solving uncovered
branching conditions. However, some code constructs, like
switch statements, are slightly more complex to cover as they
rely on jump address tables. In this scenario the jump address
is not symbolic but the index in the table can be. Therefore, a
DSE engine has to enumerate the index value if it depends on
the input. Performing pointer coverage by enumerating its val-
ues can help covering new locations. TritonDSE implements
symbolic reads and symbolic writes enumeration. This bench-
mark evaluates the gain of symbolic pointers enumeration in
Table III. Base indicates the baseline results, then, symbolic
reads/writes shows the relative improvement against base. The
SMT column is the total number of queries, input the number
of test-cases thus the number of SAT formulas and cov the
relative coverage improvement expressed in edges.

base symbolic reads symbolic writes
SMT input cov SMT input cov SMT input cov

cyclone 1506 125 305 +259 +237 +0 +55 +48 +0
freetype 667 137 570 +71 +58 +105 - - -
harfbuzz 14793 380 507 -4083 +10535 +41 -672 +280 +17
libjpeg 825 107 66 +435 +2199 +3 +289 +283 +0
libpng 211 43 96 +372 +351 +1 - - -
openthread 17 0 0 +0 +0 +0 - - -
vorbis 329 46 137 +286 +192 +2 - - -
zlib 10 3 19 +6 +1 +1 - - -

TABLE III: Results benchmark #1c: Symbolic Exploration



The internal structure of freetype and harfbuzz seems to
heavily rely on symbolic pointers. Activating symbolic reads
brings 105 and 41 new edges, therefore, a respective gain of
18% and 8%. For harfbuzz, symbolic writes also bring an
additional 3% gain. It is not improving the coverage of any
other target despite generating an extra 283 inputs (+264%).
This phenomenon also happens for symbolic reads on cyclone,
libjpeg, libpng or vorbis where many additional inputs are
generated for a very marginal coverage gain. Especially on
harfbuzz, it increases the corpus by 2772% for a low coverage
improvement. To improve scaling in the context of ensemble
fuzzing, we decided to disable symbolic pointer enumeration.

VI. BENCHMARK #2: ENSEMBLE FUZZING

A. Experimental setup

An ensemble fuzzing campaign is run on the 8 targets for
a duration of 24h. The benchmark compares test engines: 1)
running independently, 2) with

→
∪ the union of their coverage

corresponding to half-duplex mode and 3)
⇄
∩ the full-duplex

mode where fuzzers and TritonDSE share their inputs. Engines
are run once on each target. We conducted prior experiments
showing that the non-deterministic aspect of greybox fuzzers
does not change the relative results between engines. The
coverage metric used is edge.

For fairness reasons, all fuzzers run as a single thread
and are run without additional dictionary or cmplog binary.
TritonDSE is run with hyperparameters defined in Section V. It
is consequently run with PE coverage strategy, using Bitwuzla
and without symbolic pointer coverage.

B. Coverage Results

Table IV shows coverage reached for each fuzzing campaign
for engines alone, the half-duplex (

→
∪) where all engines cov-

erage is aggregated without sharing, and the full-duplex (
⇄
∩)

where inputs are shared between engines. The two ensemble
fuzzing modes do not outperform by far, but it does on 6 of
the 8 targets. The

→
∪ strategy improves the results for half of

the targets which means that while Honggfuzz is accountable
for most of the coverage discovery, there are still a few edges
only covered by AFL++ or TritonDSE that Honggfuzz did not
cover after 24 hours.

Results for
⇄
∩ outperform

→
∪ on 25% of targets (libjpeg and

vorbis). Counter-intuitively it performs worse than
→
∪, which

means that seed sharing has a weakening impact.

AFL++ Honggfuzz TritonDSE
→
∪ full-duplex (

⇄
∩)

AFL HF TT cov cov incr-
→
∪

cyclone 1249 1541 1149 1546 1544 -2
freetype 3703 12946 3305 13046 12865 -181
harfbuzz 4083 7773 3702 7773 7678 -95
libjpeg 1588 1944 841 1945 2180 +237
libpng 797 1005 432 1016 978 -38
openthread 1693 2084 1095 2097 1963 -134
vorbis 1480 1593 1022 1594 1596 +2
zlib 537 541 87 541 534 -7

TABLE IV: Coverage comparison, fuzzers and half/full-duplex

While the final coverage gives an indication on the state of
coverage after 24 hours, the temporal evolution of the coverage
is even more important, especially for short-term campaigns
of a few hours. Figures 2 gives the coverage evolution for
engines alone and half/full-duplex. Results are in logscale to
better see the beginning of a campaign.

For cyclone, as inputs are rather complex with multiple
interdependent fields, it leaves TritonDSE with many opportu-
nities to solve uncovered branches. These new inputs strongly
drive coverage improvement in the early hours of the campaign
and lead to outperform

→
∪. In this use-case, the Pastis full-

duplex collaboration helps. Honggfuzz alone only catches up
with the coverage just before the 24 hours limit.

For freetype, harfbuzz, libpng and vorbis, TritonDSE pro-
vides very few inputs and is consequently unhelpful. The
main reason is that targets are larger and Honggfuzz generates
numerous inputs, thus the replay and emulation takes more
time. In the meantime, edges are covered and there are fewer

remaining to be solved. Counter-intuitively
→
∪ outperform

⇄
∩

and slowly catches up with its coverage. This result indicates
that introducing new inputs may be pernicious in some cases.

For libjpeg in Figure 2d,
⇄
∩ strongly outperforms

→
∪ by

covering 237 more edges. Interestingly TritonDSE does not
take action here. The gap is then filled by a great osmosis
between Honggfuzz and AFL++ that help one another.

While zlib provides no insightful results because it gets
completely covered instantly, openthread exhibits an interest-

ing behavior. While
⇄
∩ ultimately loses over

→
∪ at the end of

the campaign, it originally outperforms it thanks to TritonDSE
that provides a new input that unlock fuzzers to discover
significantly more coverage.

These results show that on fuzzbench targets, DSE seldomly
helps the overall coverage. The main reason is that Honggfuzz
generates a large input corpora that TritonDSE needs to replay
to decide whether to keep them or not. Because of the
design discussed in Section III this delays the exploration and
SMT solving significantly. Also, TritonDSE alone performs
insufficiently as it lacks some symbolic modeling of multiple
functions used by fuzzbench targets and ultimately loses
symbolic tracking.

C. Full-duplex
⇄
∩ Detailed Results

Previous results show how Pastis in
⇄
∩ mode performs

against engines used alone or against simple corpus aggrega-
tion

→
∪. It is needed to breakdown the contributions of individ-

ual engines within the collaborative mode
⇄
∩. Table V shows

the amount of inputs submitted by each engine during the
collaborative campaign. As results show, Honggfuzz accounts
for most of the inputs submitted. TritonDSE submits very few
inputs for the aforementioned reasons, but as it first replays
received inputs to update its own coverage, SMT queries
solved necessarily correspond to edges not covered by any
other fuzzer.



(a) cyclone (b) freetype (c) harfbuzz (d) libjpeg

(e) libpng (f) openthread (g) vorbis (h) zlib

Legend: ■ TritonDSE ■ AFL++ ■ Honggfuzz ■ half-duplex
→
∪ ■ full-duplex

⇄
∩ • TritonDSE inputs

Fig. 2: Coverage evolution (logscale)

seeds AFL++ Honggfuzz TritonDSE Total
cyclone 1 26 1880 182 2088
freetype 2 738 15717 3 16458
harfbuzz 58 601 9253 2 9856
libjpeg 1 405 2615 1 3023
libpng 1 362 856 24 1242
openthread 1 327 834 4 1165
vorbis 1 441 767 0 1208
zlib 1 307 476 1 784

TABLE V: Inputs submission in full-duplex mode

Coverage: When running alone TritonDSE generates
respectively 136 and 169 inputs on freetype and harfbuzz.
As Table V shows in full-duplex it only solves 3 and 2
branches which means other branches were already covered
by other fuzzers. This shows that many unnecessary SMT
queries are avoided as they got covered by greybox fuzzers.
On openthread, TritonDSE is able to submit 4 inputs thus
negating 4 branches, while when running alone, none of the
reachable branches were satisfiable. It implies that in this case
fuzzers unlocked new coverage for the DSE.

As input files do not directly relate to coverage, Figure VI
shows the direct contributions of each engines to the total
edge coverage. Most edges are covered by the seed corpus.
The different columns show the additional coverage found by
each tool, in other words, the number of edges they were the
first to discover.

seeds AFL++ Honggfuzz TritonDSE Total
cyclone 844 3 656 41 1544
freetype 2631 1052 9178 4 12865
harfbuzz 3017 937 3724 0 7678
libjpeg 772 544 863 1 2180
libpng 335 281 352 10 978
openthread 1095 437 425 6 1963
vorbis 883 214 499 0 1596
zlib 66 81 387 0 534

TABLE VI: Engines coverage contribution in full-duplex mode

As expected the initial corpus contributes to most of the
coverage. We can compare additional edges discovered by
fuzzers. Honggfuzz is the first to discover most edges, which
is consistent with previous observations on the number of
inputs generated by each engine. However, many of its inputs
do not cover any new edges. As an example on openthread,
AFL++ and Honggfuzz generate respectively 327 and 834
inputs (2.5 times more) but they respectively discover 437
and 425 new edges. As such, AFL++ has better input to
coverage ratio. TritonDSE is meant to have 1/1 or more as
any solved conditional branch should provide an input that
exercises a new edge. However, results of coverage show a
slightly inferior ratio. This might be due to an input submission
race condition where another fuzzer discovers the same branch
and submits its input in the time it takes TritonDSE to perform
the DSE and query the solver.



For openthread, TritonDSE generates 4 inputs discovering
6 edges. This result does not explain coverage inflation shown
in Figure 2f. The explanation is that even though the inputs
did not directly cover many new edges, it enabled one of the
fuzzers to discover way more coverage.

VII. RELATED WORK

Greybox fuzzing and DSE have widely been studied [1],
[15]. Fuzzing is a very active research domain and algorithms
are getting more and more sophisticated [16], [17]. However
efficiently combining greybox fuzzing and whitebox fuzzing is
less studied. The two main approaches are hybrid fuzzing [18],
where engines are tightly coupled, or ensemble fuzzing, where
all engines are considered equal from a functional aspect.

Hybrid Fuzzing: The selective symbolic execution ap-
proach proposed by driller [19] aims to augment AFL with
concolic execution (DSE) to only explore paths deemed in-
teresting by the fuzzer that it did not manage to cover.
The difficulty with this approach is determining interesting
paths and determining when the fuzzer is stuck to launch
the symbolic exploration. Still, Pastis applies in essence
selective symbolic execution as it only solves uncovered edges.
The main difference is that the driller fuzzer launches the
DSE on purpose when blocked while in Pastis they run
simultaneously all the time.

Another approach is Qsym [20] that deeply intertwines the
fuzzing and the concolic engine to improve scaling. They
also relax soundness by solving partial formulas and ignore
some basic blocks. To further improve performances, the
authors get rid of intermediate representation and have a direct
translation of instructions to symbolic expressions. This design
requires significant modifications of the fuzzer and requires
integrating with a single fuzzer. The Pastis design choices
favor multiples engines and a light integration in each engine.

Ensemble Fuzzing: do not combine engines tightly but
consider them equally and emphasizes external mechanisms
to synchronize them making them work together. Multiple
frameworks have been suggested like deepstate [21], En-
Fuzz [22] or Collabfuzz [23]. The latter aims at implementing
policies at broker level to perform some input filtering or
routing to the different engines. Same authors later proposed
Cupid [24] to automatically select the right set of fuzzers
for collaborative fuzzing. These approaches mostly integrate
greybox fuzzers and thus do not address greybox/whitebox
interactions. Google, and Microsoft released respectively Clus-
terFuzz [25] and OneFuzz [26], their fuzzing infrastructures
enabling running campaigns using various fuzzers. These
frameworks are mature to be used in production, but require
a heavy setup and installation process. ClusterFuzz is the
underlying infrastructure behind OSS-Fuzz [27].

Recent modular fuzzing framework like LibAFL [28] or
centipede [29] are providing built-in mechanisms for collabo-
rative fuzzing. As such, LibAFL defines LLMP7 (Low Level
Message Passing) for client synchronization using a broker

7https://aflplus.plus/libafl-book/message passing/message passing.html

mechanism. Primarily designed for inter-process communica-
tion it also enables communication over the network.

VIII. DISCUSSION

Limitations: In a collaborative environment, using cov-
erage provides the direct contribution of each engine to the
overall results, but indirectly represents help provided by en-
gines to each other. Gathering this information would require
a better way to instrument fuzzers to study the beneficial or
prejudicial impact of inputs received.

Although the DSE has been tuned to better scale (cf.
Benchmarks #1) it is still orders of magnitude slower than
greybox fuzzing. Combined with high input throughput fuzzers
like Honggfuzz consequently inhibit DSE’s effectiveness. Side
experiments performed with solely TritonDSE and AFL++
have shown that it helps AFL++ more significantly. As results
show, even used alone, TritonDSE covers way less edges than
fuzzers. The reason is, the lack of symbolic modeling for many
libc functions and syscalls.

Threat to Validity: Each benchmark was launched once,
thus it can imply a statistical bias induced by fuzzers non-
determinism. Also, for Honggfuzz, inputs received are prop-
erly introduced in his queue, but we have no feedback on
whether it has properly been executed afterward nor if it was
a valuable input.

Future Work: On the DSE side, efficiency can be im-
proved by relaxing soundness assumption like Qsym or under-
constrained symbolic execution approaches [30]. TritonDSE
might also benefit from running in a concolic manner directly
within a QBDI instrumentation for instance.

On the fuzzing side, fuzzers like AFL++ run with simple
configuration. One can study the impact of cmplog or dic-
tionaries on the ensemble fuzzing campaign. As results show
for many targets, the coverage is still evolving when the 24h
deadline is triggered. An axis of research is running longer

campaigns to evaluate if
⇄
∩ outperforms

→
∪ in the long run.

If so, evaluating precisely the lagging induced by the seed
sharing would be valuable.

Also, only naive policies have been tested, half-duplex
→
∪,

and full-duplex
⇄
∩. Notwithstanding Collabfuzz research [23]

suggests that no clear policy is outperforming, it is interesting
to test unidirectional approaches based on the engine type,
like whitebox→greybox only, or the reverse. As many inputs
shared do not improve coverage it would be valuable to
filter inputs strictly generating new coverage at broker level.
However, that implies the broker playing an active replay role
instead of just being a dispatcher.
Pastis has been designed with closed-source scenarios in

mind, thus, it was not appropriate using Fuzzbench [12] tool-
ing that relies for instance, on instrumentation from source for
the coverage. It was also not possible to monitor the ensemble
fuzzing collaboration as precisely as being done in Pastis
broker. Nonetheless, integrating Pastis in fuzzbench en-
ables, on open-source targets, to relate results with the other
engines supported.

https://aflplus.plus/libafl-book/message_passing/message_passing.html


IX. CONCLUSION

This paper shows experimental results of a collaborative en-
semble fuzzing framework combining greybox and whitebox
fuzzing. It brings new token of appreciation for RQ1 showing
that DSE can help greybox fuzzing achieving better coverage
on some targets. These early results give another evidence that
ensemble fuzzing and especially

→
∪ is outperforming fuzzers

alone especially at the beginning of a campaign. Indeed,
fuzzers are certainly initially exploring different part of the
program and then converging on harder ones. Thus ensemble
fuzzing is beneficial in short-term campaigns which makes it
suitable to be used in CI/CD context. For longer campaigns,
these results show that Honggfuzz used alone provides a better
cost-to-benefit trade-off in terms of computational time.

Yet, results show that there is room for improvement for
⇄
∩ in order to give a positive answer to RQ2. Undeniably,
Honggfuzz is noisy in terms of input generation which
combined with TritonDSE inhibits its effectiveness. However
these, results open the way to explore more efficient collab-
oration strategies or seed sharing schemes. The two open-
source frameworks Pastis and TritonDSE provide a flexible
experimental framework for further testing.
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[17] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” in 31st USENIX Security Symposium, USENIX Secu-
rity 2022, Boston, MA, USA, August 10-12, 2022, K. R. B. Butler and
K. Thomas, Eds. USENIX Association, 2022, pp. 3255–3272.

[18] B. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing and
symbolic execution,” 2012.

[19] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in 23rd Annual Network
and Distributed System Security Symposium, NDSS, 2016.

[20] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association,
2018, pp. 745–761.

[21] P. Goodman, G. Grieco, and A. Groce, “Tutorial: Deepstate: Bringing
vulnerability detection tools into the development cycle,” in 2018
IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA,
September 30 - October 2, 2018, 2018, pp. 130–131.

[22] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su,
“Enfuzz: Ensemble fuzzing with seed synchronization among diverse
fuzzers,” in 28th USENIX Security Symposium, Santa Clara, CA, USA,
2019. USENIX Association, 2019, pp. 1967–1983, [site].
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