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Abstract—In software testing, coverage criteria specify the
requirements to be covered by the test cases. However, in prtice
such criteria are limited due to the well-known infeasibility
problem, which concerns elements/requirements that canncdbe
covered by any test case. To deal with this issue we revisit
and improve state-of-the-art static analysis techniquessuch as
Value Analysis and Weakest Precondition calculus. We propse a
lightweight greybox scheme for combining these two techniges
in a complementary way. In particular we focus on detecting
infeasible test requirements in an automatic and sound way
for condition coverage, multiple condition coverage and wak
mutation testing criteria. Experimental results show that our
method is capable of detecting almost all the infeasible tes
requirements, 95% on average, in a reasonable amount of time
i.e., less than 40 seconds, making it practical for unit testg.

Keywords—structural coverage criteria, infeasible test require-
ments, static analysis, weakest precondition, value analysis

I. INTRODUCTION

requirements indicates a potential weakness of the tesscas
and hence, some additional test cases need to be constructed

Infeasible test requirements have long been recognized as
one of the main cost factors of software testing [40], [3ZB][
Weyuker [37] identified that such cost should be leveraged
and reduced by automated detection techniques. This issue i
due to following three reasons. First, resources are wasted
attempts to improve test cases with no hope of covering these
requirements. Second, the decision to stop testing is made
impossible if the knowledge of what could be covered remains
uncertain. Third, since identifying them is an undecidable
problem [17], they require time consuming manual analysis.
In short, the effort that should be spent in testing is wasted
understanding why a given requirement cannot be covered.

By identifying the infeasible test requirements, such as
equivalent mutants, testers can accurately measure thex-cov
age of their test suites. Thus, they can decide with confielenc
when they should stop the testing process. Additionalkyyth

For most safety critical unit components, the quality of thecan target full coverage. According to Frankl and lakourmenk
test cases is assessed through the use of some criteria kisowr{14] this is desirable since the majority of the faults are

coverage(or testing criteria. Unit testing is mainly concerned
with structural coverage criteria. These coverage cateare
normative test requirements that the tester must satidfyrde
delivering the software component under test.

triggered when covering higher coverage levels, i.e., f8@%%
to 100% of decision coverage.

Despite the recent achievements with respect to the test
generation problem [2], the infeasible requirements bl

In practice, the task of the tester is tedious, not onlyremains open. Indeed, very few approaches deal with this
because he has to generate test data to reach the criteriggue. Yet, none suggests any practical solution to it. is th
expectations but mainly because he must justify why a aertaipaper we propose a heuristic method to deal with the infeasib
test requirement cannot be covered. Indeed it is likely thatequirements for several popular structural testing GaiteéOur
some requirements cannot be covered due to the semantigpproach is based on the idea that the problem of detecting

of the program. We refer to these requirementsnésasible

infeasible requirements can be transformed into the assert

and adfeasiblein the opposite case. The work that we presentvalidity problem. By using program verification techniquis

here, aims at making this justification automatic. We prepms
generic and lightweight tooled technique that extends frestL
testing toolkit [6] with a component, called LUncov, dedaxh
to the detection of infeasible test requirements. The agpyro

stands for any piece of software code (in particular C) that i

submitted to strict test coverage expectations such astaumd
coverage, multiple condition coverage and weak mutation.

becomes possible to address and solve this problem.

We uselabels[7], [6] to encode several structural testing
criteria and implement a unified solution to this problbased
on existing verification tooldn this study, we focus osound
approachesi.e., identifying as infeasible only requirements
that are indeed infeasible. Specifically, we consider twthme
ods, the (forward)Value Analysisand the (backwardyVeak-

Coverage criteria thus define a set of requirements thasst Preconditiorcalculus. Value Analysis computes an over-

should be fulfilled by the employed test cases. If a test casapproximation of all reachable program states while Wetakes
fulfills one or more of the test criterion requirements, wg sa Precondition starts from the assertion to check and corspute
that it coversthem. Failing to cover some of the criterion in a backward manner a proof obligation equivalent to the
validity of the assertion.

* Work partially funded by EU FP7 (project STANCE, grant 313yand

French ANR (project BINSEC, grant ANR-12-INSE-0002). We consider these approaches since they are representative



of current (sound) state-of-the-art verification techgis. s, if P(t) is of the formo - (loc, s) - p. A test suiteT’'S C D
Moreover, due to their nature, they are complementary and a finite set of test data.

mutually advantageous to one another. We esisting ana-
lyzers either in a purdlackboxmanner or with light greyboy
combination schemes.

Recent work [7] proposed the notion of labels as an ex-
pressive and convenient formalism to specify test requeres)
Given a programP, alabel [ is a pair (loc, ¢) whereloc is
In summary our main contributions are: a location inP and ¢ is a predicate over the internal state at

- . . . . loc. We say that a test datumcovers a label = (loc, ) if
e We revisit static analysis approaches with the aim ofy,oq s 5 state such thatt reachesloc, s) andss satisfies.
identifying infeasible test requirements. We classify ’

; L . A tated ' ir(P, L) whereP i
these techniques &tate Approximation Computatipn n annotated progranis a pair (P, L) where P is a program

such as Value Analysis, ardoal-Oriented Checking and L is a set of labels in”.

such as Weakest Precondition. It has been shown that labels can encode test requirements
e We propose a new method that combines two suctior most standard coverage criteria [7], such as decision

analyzers in a greybox manner. The technique i£Overage (DC), condition coverage (CC), multiple conditio

based on easy-to-implement API functionalities on theCOVerage (MCC), and function coverage as well as side-effec

State Approximation Computation and Goal-Oriented(T€€ weak mutations (WM) and GACC [29] (a weakened form

Checking tools. More importantly, it significantly out- of MCDC). Moreover, these encoding can be fully automated,

performs each one of the combined approaches alon&S the corresponding labels can be inserted automaticedly i

e We demonstrate that static analysis can detect almot e program under test. Some more complex criteria such as
: . ; y . CDC or strong mutations cannot be encoded by labels.
all the infeasible requirements of the condition cover-

X ) -~ Fig. 1 illustrates possible encodings for selected cateri
age, multiple condition coverage and weak mutation
testing criteria. In particular, the combined approach

identifies on average more than 95% of the infeasible el TR e ach
requirements, while Value Analysis detects on averagest at enent _1; I 12 xt=y I11 12 xl=y && a<b
63% and Weakest Precondition detects on averaggf %X:{_&& el B e s gy s
82%. Computation time is very low when detection |s; atement _3; it (x==y && a<b) ||if (x==y '&&ya<b)

is performed after test generation (in order to evaluate {-.h {...h

coverage precisely), and we show how to keep it very statement _3; statement _3;
reasonable (less than 40 seconds) if performed before- Condition Multiple Conditon
hand (in order to help the test generation process). Coverage (CC) Coverage (MCC)

° We show that by identifying infeasible requirements Fig. 1. A label encoding of test requirements for standankr@ge criteria

before the test generation process we can speed-up h in benefit of labels i ify th f
the automated test generation tools. Results from an _1h€ main benefit of labels is to unify the treatment of test

automated test generation technique, D$H, show requirements belonging to different classes of coveraiterier
that it can be more thar55x faster in the best case N @ transparent way, thanks to the automatic insertiontmlta
and approximately-3.8x faster on the average case in the program under test. While the question of automast te

(including infeasibilty detection time) focus i this paper on he problem of infeasihlty detentio
The rest of the paper is organized as follows: Sections

II'and 1l respectively present some background material ang, Frama-C Framework andLTEST Toolset for Labels

how static analysis techniques can be used to detect ibfeasi , . .
requirements. Section IV details our combined approach and This work relies on RAMA-C [22] for our experimental

its implementation. While section V describes the empiricaStudies. This is an open-source framework for analysis of

study, Section VIl discusses its implications. Finallylated ~C ¢ode. RAMA-C provides an extensible plugin-oriented
work and conclusions are given in Sections VI and VIIL. architecture for analysis collaboration, and comes wittioves

analyzers that can share analysis results and communicate
through a common abstract syntax tree (AST) and a common

Il. BACKGROUND specification language ACSL [22] to express annotations. In
This section presents some definitions, the notation @lateOur context, RAMA-C offers the following advantages: it
to test requirements and the employed tools. implements two different (sound) verification techniques i

the same environment (Abstract Interpretation and Weakest
. Precondition, cf. Section 11I-C), it is open-soutceobust and

A. Test Requirements as Labels already used in several industrial contexts [22, Sec. 11].
Given a programP over a vectorl/ of m input variables

taking values in a domai® £ D, x --- x D,,, a test datum

¢ for P is a valuation ofV, i.e.,t € D. The execution of®  jeyeloped as aFaMA-C plugir?. LTEST provides the follow-
overt, denotedP(t), is a runo = ((locy, 1), .., (loc1,51)) ing services: (1) annotation of a given C program with labels
where theloc; denote control-locations (or simply locations) according to chosen coverage criteria; (2) replay of a giesh

of P and thes; denote the successive internal states’of~  gjite and coverage reporting; (3) detection of infeasibbels
valuation of all global and local variables as well as memory

allocated structures) before the execution of the cormedipg 1Available athttp: //frama-c. cont .
loc;. A test datumt reaches a locatiofvc with internal state 2Available athttp: //nmicdel . fr/ltest. htni.

We also rely on and further extend EST [6], an all-in-
one testing platform for C programs annotated with labels,




GRS ly /I@gz)ssért H(1x & 1y); mapping an assertion to one of three possible verdictsd vali
it (Ix 1y =] if (Ux 1] y) (1), invalid (0) or unknown {). We consider here only sound
) ..} ) ...} analysis technigues. In this conteX is soundif whenever

the procedure outputs a verdiét (a) = 1 (resp.,Vp(a) = 0),

Fig. 2. Transforming an (infeasible) test requirement @t(valid) assertion  the assertiona is indeed valid (resp., invalid). Since the

assertion validity problem is undecidable (cf. Sec. I),suc
rocedures are in generahcompleteand may return the
known verdict.

based on sound analysis of the source program (Forward Val
Analysis); and finally (4) automatic test generation thioug
the DSE procedure [7], an extension of Dynamic Symbolic ~ We review and classify such techniques into two categories:
Execution [16], [35], [38] which handles labels in a nativela State Approximation Computation and Goal-Oriented Check-
very optimized way. Interestingly, all services can coaper ing. These two categories are built on orthogonal appraache
together by sharing a database of label statuses. For esamp(eager exploration vs property-driven analysis).

test generation takes advantage of the results of infdiagibi
detection in order to prune its own search space [6]. Th
infeasibility detection service (LNcov) is extended by the
present work.

otate Approximation Computation . The objective of a State
Approximation Computation (SAC) technique is to compute an
over-approximation of the set of reachable states of thergiv
program at each program location. L&tdenote the set of
IIl. PROOE OEASSERTIONVALIDITY over-approximationss' that can be computed by a particular
SAC technique. In order to be applicable for assertion itglid

In the sequel, we assume that test requirements are €¥pecking, SAC should provide the following procedures:
pressed in terms of labels. They can be either automatically

inserted for common classes of structural test requiresnent Analysis ASAC P—S

(cf. Sec. 1I-B, tool LTEST), or manually added for some very Implication check 794¢ . Sx A—{1,0,7}
specific test purposes. This section gives a charactenzati
of infeasible test requirements in terms of valid assestion
provides a brief presentation and classification of existin
static analysis techniques for their detection, and dessrihe
specific techniques and tools we use throughout the paper.

The analysis procedured4¢ computes a state over-
approximation4~4¢ (P) for a given progran®. The implica-
tion (or state inclusion) checking proced@&¢ determines
if a given assertioru is implied by a given reachable state
approximationS. It returns a verdicf°4¢ (S, a) stating if the
procedure was able to deduce from the state approximation
that the assertion is valid (1), invalid (0) or if the result was
Let (P, L) be an annotated program. A laet L (and the  jnconclusive ¢). The implication check depends on the specific
CorreSpondlng test I‘equwement) is calfedsibleif there exists form of the state approximatioﬁ_ Based on these procedures’

a test datum covering Otherwisel is calledinfeasible To  the assertion validity check is easily defined as follows:
avoid any confusion between the original label and its pnove

i SAC .
counterpart, along with labels we will use the dual notion of SAC validity check  Vp™~: A —{1,0,7}

A. Infeasible Test Requirements as Valid Assertions

assertions. Syntactically, amssertiona is also a pair of the a s I949(A54C(P), a)
form (loc,). The assertiom is valid® if it cannot be false,
i.e. if there does not exist any test datarsuch thatt covers An important characteristic of this class of techniques is

(loc, ). Given a labell = (loc, ) € L, let a; denote the that the analysis step needs to be executed only once for a
assertion(loc, =), that is, the negation of the predicateof ~ given programP even if there are several assertionsAn

| asserted at the same locatibm. For a set of labeld, over  Indeed, only the implication che@® ¢ (A4¢(P), a) should

P, we define the set of assertiony, = {a;|] € L}. The be executed separately for each assertiog A, based on
following lemma easily follows from the definitions. the same state approximatio#®4¢ (P). Typical State Ap-
proximation Computation implementations include (ford)ar
abstract interpretation based tools, such as implememted i
ASTREE [11] and Clousot [13], and software model checking
tools, such as BLAST [9] and SLAM [4].

Fig. 2 illustrates the transformation of a test requirementoa|-Oriented Checking. The second category includes Goal-
expressed as a label in a C code, into an assertion exDreSS@ﬁented Checking (GOC) techniques that perform a specific
in the ACSL specification language. In this example, thellabegnaysis for each assertion to be proved valid. Unlike fateSt
is infeasible and the assertion is valid. Approximation Computation, such an analysis can be simpler
. . since it is driven by the assertion to check, yet it should be
B. Classification of Sound Static Analyses repeated for each assertion. We can thus represent a GOC
The assertion validity problem can often be solved by statidechnique directly by the procedure

Lemma 1. A labell is infeasible if and only if the assertion
a; is valid. The problem of detecting infeasible labelsliris
equivalent to the problem of detecting valid assertionsiin

analysis techniques. To do so, given a progrBmvith a set P GocC . 2
of assertionsA, such a technique needs to offer a validity GOC validity check VerT o A= {1,071
checking procedure that returns the validity statu¥$°“(a) for an assertion

Vp:A—{1,0,7) a € A. Typical Goal-Oriented Checking tools include weakest
P e precondition checkers, backward abstract state exptorati
3A different definition is sometimes used in the literaturdjeve validity ~ Packward bounded model checking, and also CEGAR software
also includes reachability. model checkers (which belong to both GOC and SAC).




C. Choice for SAC and GOC Tools In addition to the general API for SAC and GOC tech-
. o . niques (introduced in Sec. 1lI-B), the greybox combination
Choice for State Approximation Computation. We select rgjies on some extensions. First, we require an enhanced GOC

_the value analysis pluginALUE_ of FRAMA-C [22]. VALUE validity check taking into account hypotheses:
is a forward data-flow analysis based on the principles of

abstract interpretation [10], which performs a whole-peng GOC validity check ~ VE°“: Hx A — {1,0,7},

analysis based on non-relational numerical domains (ssch Ahere H denotes possible sets of hypotheses. Second, we
intervals and congruence information) together with a byte require two additional procedures. The first one 'computes, th

level re_gmn—based memory modehLUE computes a sound set of relevant variableB,, (defined above) for the considered
approximationsS of values of all program variables at each QOC technique for each assertian

program location, that can be used to deduce the validity o
an assertiom = (loc, ). Relevant variables REPY: A — Set(L x V)

Choice for Goal-Oriented Checking. We selectwp [22], a— Rq

a FRAMA-C plugin for weakest precondition calculus. It Gjven a computed state approximatiSrand a set of relevant
takes as input a C program annotated in ACSL. From eaclgriables, the second procedure

ACSL annotationwp generates a formula (also calledoof

obligatior) that, if proven, guarantees that the annotation is Hypotheses creation #24“ : S x Set(L x V) — H

valid. It may then be proved automatically via an SMT solver (S,R)— H
(Alt-Ergo, Z3, CVC4).wP can take advantage of handwritten . . .

ACSL assertions, yet since we are interested in fully autecha deduces a set of verified properti¢é for these variables
approaches, we do not add anything manually. Notice wrat and locations that will be used as hypotheses by the GOC
considers each function independently, and, thereforeoie ~ @nalysis step. For instance, a p@lioc;, v;) € R may lead to

scalable than non modular analysis lieLUE . a hypothesigioc;, m < v; < M) if the state approximatiosy
guarantees this interval of values for the variallat location

loc;. Here again, we consider only sound hypotheses creation

IV. GREYBOX COMBINATION OF STATE APPROXIMATION
procedures.

COMPUTATION AND GOAL-ORIENTED CHECKING

This section presents a greybox combination of State ApThe method steps.The complete metho§AC @& GOC is
proximation Computation and Goal-Oriented Checking techdepicted in Fig. 3, where the boxes denote the main steps,
niques that we propose for detecting valid assertions. We fir while their output, assumed to be when necessary also part
present our combination in a generic way, for any SAC andf the next steps’ input, is indicated on the arrow. First, a
GOC proceduresSAC ¢ GOC). Ultimately, we use it to SAC analysis step.{>“4¢) computes a state approximation
combine Value Analysis and Weakest Precondition@¥P),  S. This step is performed only once, while the other ones

and more especially theRAMA-C pluginsvALUE and wp. are executed once for each assertione A. Next, if the
implication check 154¢) returns1 showing thata is valid,
A. The Combined Method the method terminates. Otherwise, the greybox part starts b

. o . o extracting the seR, of variables and locations relevant &
Intuition.  The main idea of this new combination is to Next, the setR, and the previously computed approximation
strengthen Goal-Oriented Checking with additional prapsr g are used to deduce properties of relevant variables that wil
computed by State Approximation Computation, but takinghe submitted as hypotheses to the last step. Finally, a GOC
only properties relevant to the assertion whose validityois analysis step§°C) checks if the assertion can be proven
be checked. These properties must be put into a form thgfyjig using the additional hypotheses ih
GOC can use. We will call thenmypothesesor assumes
Syntactically, hypotheses are paiisc, ¢) like assertions. Advantages. The proposed combined approach takes benefit

Yet, a State Approximation Computation produces lots of20th from the global precision of the approximation complute
information about variable values at different programnpmi  BY SAC for the whole program and the local precision of
that can often be irrelevant for a particular assertionvieing ~ @nalysis for a given assertion ensured by GOC. Therefore,
a lot of irrelevant or redundant information to Goal-Orienit  this technique can be expected to provide a better precision
Checking would make it less efficient. Our first point is thusthan the two methods used separately. Careful selection of
to determine which variables are relevant to a given asserti information transferred from SAC to GOC tries to minimize
and at which program points they are. Then, relevant va&bl information exchange: the amount of useless (irrelevant or

are used to produce a set of hypotheses, that will be assumégdundant) data is reduced thanks to the greybox combmatio
and used during the GOC step. On the other hand, even if not being blackbox, the greybok par

remains lightweight and non-invasive: only basic knowked§
Extended API. Let P be a program, and a set of assertions the GOC technique is required to implement REC step,
in P whose validity we want to check. Let us denotelbyhe  and only basic knowledge of datastructures and contents of
set of locations inP, and byV the set of variables if°. We  approximations computed by SAC is necessary to query them
represent relevant variables (and locations) for an aseert  and to produce hypotheses at H&4 step. Neither SAC nor
by a subseR?, = {(loci,v1),..., (locp,v,)} Of Set(L x V).  GOC requires any modification of the underlying algorithms.
That is, R, is a set of couplegloc;,v;) such that the value Moreover, the approximatio® is computed only once, and
of the variablev; at locationloc; is considered relevant to the then used for all assertions. These elements constitute the
assertion. cornerstone of the proposed combination of the two methods.
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Fig. 3. Computing assertion validity status by the combiapgroachSAC @& GOC for a given programP and all given assertions € A

integer values (including primitive variables, structure
fields, array values or values referenced by a pointer).
Note that missing other kind of information affects the
completeness of our method, but not its soundness.

Regarding soundness of the approach, notice that sound-
ness of theREY step is not required: various heuristics can
be used to select relevant variables and locations that only
impact the number and location of the future hypotheses and
not their correctness. Yet, as mentioned above, the hypeshe . . ]
construction H$4¢ as well as the procedures defined in Extension of LUNCOv. The earlier version [6] of LWcov,
Sec. l1I-B are required to be sound. Soundness of the comdbindhe 1abel infeasibility detection service of the EST toolset,

approach easily follows from soundness of both techniques: Used onlyvALUE in a blackbox manner. The present work
extends it by two new modes. In the second modeNCOv

Theorem 2 (Soundness)Assume that the combined tech- constructs for each labéla program with its negation;, and

niques SAC and GOC are both sound. THehC & GOC  rynswe in blackbox to check if; is valid (that is, by Lemma

is a sound Goal-Oriented Checking technique. 1, if { is infeasible). The last mode implements the greybox
combination VADWP described in Sec. IV-A and IV-B.

B. Implementation ifFRAMA-C: VA®WP

The propose$AC & GOC method is implemented on top - USe case

of the RRAMA-C framework, and extends the label infeasibility ~ Fig. 4 illustrates how the combined technique3A/P can
detection service LNcov of LTEST (cf. Sec. II-B). We use prove properties that could not be proven by each technique
the VALUE and wp plugins as implementations of SAC and separately.Fr ama- C i nterval is a built-in FRAMA-C
GOC, respectively, and we denote by /P their combina- function returning a non-deterministic value in the givange.
tion. These plugins have been presented in Sec. llI-C. They

readily offer the requested API for SAC and GOC analyzer§; i rmin() ¢

int a = Frana_C_interval (0, 20);
int x = Franma_C_i nterval (-1000, 1000);
return g(x,a);

Let us provide more implementation details on the grey-
box combination, which is now implemented in the NU
cov plugin following the formal presentation of Sec. IV-A. E’m olint x
The possibility for several RAMA-C analyzers to work on int res;

the same program in different projects and to communicate i f (x+a >= x)

int a) {

through annotations (e.g. assertions, assumes) in the oamm L% = %
specification language ACSL [22] significantly facilitatéme res = 0;

implementation. Basically, hypothesBs are implemented as |, // @ssert res == 1;

ACSL annotations assumed to be true. Here are a few hints
about the |mplementat|on_ of the additional requirements Orl‘:ig. 4. A valid assertion that is proven neither ¥WLUE nor by wp alone
SAC and GOC described in Sec. IV-A.

e Support of hypotheses (iV§9C): the ability to The assertion in functiog can be proven neither byaALUE
take into account assumed hypotheses is an essentia@r by wp alone on a platform like RAMA-C. VALUE is

feature of wp. The implementation of hypotheses uUnable to prove thak+a >= x is always true because it
insertion relies on the existing services offered by thelacks relational domains and does not recognize that both

ERAMA-C kernel. occurrences ox refer to the same variable and have the same

o Relevant locations and variable® €°C): we does value. Working on a per function levelyp ignores possible

not provide such API function, so we add our own values ofx and a in the functiong and cannot prove the
simple function on top of it Si’nce the plugin works validity of the assertion because of possible overflows.

in a modular way, our implementation just returns all  In VAGWP, we first runvALUE on the whole program,
pairs of locations and variables found in the functionthen use its results to insert relevant variable infornmatito
containing the assertion to check. g as shown in Fig. 5, that allowsP to prove the assertion.

e Hypotheses creatiorH{p): we rely on the primitives
offered by thevALUE plugin to explore the computed
approximation of reachable states, and we expor
them as ACSL annotations. The actual implementatio
returns annotations (on the form of interval and con- In this study we investigate whether static analyzers are
gruence constraints) only for expressions evaluating t@apable of detecting infeasible test requirements. Thesef

V. EXPERIMENTAL EVALUATION
. Research Questions



int g(int x, int a) { the computation of weakest preconditions, denoted as WP;
[T@ssume a >= 0 &8 a <= 20, and (3) the proposed combination of the VA and WP, denoted
/1 = -1000 && x <= 1000; ! ik
.m@‘fii”e x>t <=t VAGWRP. It is noted that for the WP and VWP, a timeout
if(x+a >; x) is set on the solver calls of 1 second (thankswte API).
res = 1;
elee . Results. Table | records the results fd&RQ1. For each pair
/] @ssert res == 1: of program and criterion, the table provides the total numbe
} of infeasible labels (from a preliminary manual analysi$ [7
. _ _ . _ ), the number of detected infeasible requirements and the
Fig. 5. Functiong of Fig. 4 enriched with hypotheses farp percentage that they represent per studied method. Siece th
studied methods are sound, false positives are impossible.
a natural question to ask is about their relative effectagsn From these results it becomes evident that all the studied

and efficiency. By showing that these techniques can provid&ethods detect numerous infeasible requirements. Outeof th
a practical solution to the infeasibility problem, testersd three methods, our combined method WP performs best
practitioners can adequately measure the true coverage 8 it detects 98% of all the infeasible requirements. The VA
their test suites. Another benefit is that test generatiofsto and WP methods detect 69% and 60% respectively. Interest-
can focus on covering feasible test requirements and henciégly, VA and WP do not always detect the same infeasible
improve their performance. In view of this, we seek to answetabels. For instance, WP identifies all the 11 requirements
the following three Research Questions (RQs): in fourbal | s-WM while VA finds none. Regarding the
ut f 8- 3-WM, VA identifies all the 29 labels while WP finds
only two. This is an indication that a possible combination
of these techniques, such as the&WP method, is fruitful.
RQ2: How efficient are the static analyzers in detectingThus, VADWP finds at least as much as VA and WP methods
infeasible test requirements? on all the cases, while in some, i.e.epl ace-WM and

RQ3: To what extent can we speed-up the test generatio%UI | _bad-WM, it performs even better.

process by detecting infeasible test requirements? TABLE . INFEASIBLELABEL DETECTION POWER

RQ1: How effective are the static analyzers in detecting
infeasible test requirements?

Program | LOC | Crit. | #Lab | #Inf VA WP VA @& WP

B. Tools, subjects and test requirements %D |#D| %D | #D| %D

£
O

In our experiments we use thekEMA-C and LTEST tools viyp 80 ) cCl 2 0 i 4 e S
as they were explicitly defined in Sections II-B, IlI-C and WM | 129 4 100%| 4| 100%| 4| 100%
IV-B. For RQ3, we consider the automatic test generation [fourballs [35 | WM | 67| 11 0% | 11|100% | 11| 100%

procedure of LEST, based on DSE (cf. Section II-B). utle-3 | 108 | WM | 84| 29
We consider 12 benchmark progr@mtaken from related [ufs5 [108 [ wM| 84| 2
works [7], [6], mainly coming from the Siemens test suite |utf8-7 108 | WM | 84| 2

100%
100%
100%

7% | 29| 100%
100% 2| 100%
100% 2| 100%

(tcas andrepl ace), the Verisec benchmarkgét t ag tcas 124 Mgg 1(2) (1) o 100% ‘1) 100%
andf ul | _bad from Apache source code), and MediaBench ww | 111] 10 60% so%| 101 100%

(gd from libgd). We also consider three coverage criteria: [repiace [100 | WM | 80| 10
CC, MCC and WM [1]. Each of these coverage criteria [fuipad 219 | cc| 16| 4
were encoded with labels as explained in Section Il-A. In MCC| 39| 15
the case of WM, the labels mimic mutations introduced by WM | 48] 12

50%
50%
60%
58%

30% | 10| 100%
100%| 4| 100%

100%| 15| 100%
75%| 11| 92%

[N

W ONO ONO| OO0 OVUIh|WOROIN| NN

N [ee] N
OCOR|ONO|ONO|INOOINOO|NON|U[OOO[N| N O|O|~MOO

MuJava [23] for operators AOIU, AOR, COR and ROR [1], |929°|240 | ©¢) 20/ 0 N N -
which are considered very powerful in practice [28], [3%.ch wM | 47| 3 67% 0% | 2| 67%
label is considered as a single test requirement. Ovenatl, 0 |gettag6]240 | cc| 20| © - -T o -
benchmark consists of 26 pairs program—test requirements. MECT 29 o il B
h . 1 (] 0% 2| 67%

Among the 1,270 test requirements of this benchmark, 121 95 39 1 ccl 361 o — - — —
were shown to be infeasible in a prior manual examination. mcc| 38| 7 100% 100%| 7| 100%
Experiments are performed under Linux on an Intel Core2 WM 6| 1 0% 0% 1|100%
Duo 2.50GHz, 4GB of RAM. In the following only extracts of |9d-6 319 | cC| 36} 0 - -1 O -
. . h . MCC 36 7 100% 100% 7 | 100%

our experimental results are given. Further details aréadla wMm | 63l o _ —| o _
online in an extended version of this paper Total 1,270| 121 69% | 73| 60%]| 118| 98%
Min 0 0%| 0| 0%| 2| 6%

; Max 29 100%| 15| 100%| 29| 100%

C. Detection powerRQ1) Mean 47]32| 63%|2.8| 82% | 45| 95%

#D: number of detected infeasible labels %D: ratio of dednfeasible labels

Protocol. To answerRQl we compare the studied methods —: no ratio of detected infeasible labels due to the absehageasible labels

in terms of detected infeasible test requirements. Thus, we
measure the number and the percentage of the infeasib .
requirements detected, per program and method. In total - Detection speedRQ2)

investigate 26 cases, i.e., pairs of program and criterigih, In this section we addred$8Q2, that is about the required
3 methods. Therefore, in total we perform 78 (26 X 3)time to detect infeasible requirements per studied metfiod.
runs. The methods we consider are: (1) the value analysihis end, we investigate three scenariosa @yiori which con-
technique, through abstract interpretation, denoted as(®A  sists of running the detection process before the test giéaey



ds)

b) mixedwhich starts with a first round of test generation, then
applies the detection method and ends with a second round o
test generation and @ posterioriwhich consists of running
the detection approach after the test generation process.

48.9 Input paths
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We investigate these scenarios since WP, as a Goal£
Oriented Checking, is strongly dependent on the number ofg
considered requirements. Thus, the goal of the a) scerario i=
to measure the required time before performing any test gen-g
eration and hence, check all the considered requiremehés. T &,
b) scenario aims at measuring the time needed when having &
fairly mixed set of feasible and infeasible requirementse T 2 0.8
goal of the c) scenario is to measure the required time when ol—=
almost all of the considered requirement are infeasible. a priori mixed a posteriori
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. . . . Detection methods: DOVA BawpP HEVAQWP
Protocol. We consider the time required to run each detection ©

method per program and scenario, ia.priori, mixedanda
posteriori In thea priori approach, the detection consider al
labels as inputs. In thmixedapproach, we chose to use a fast
but unguided test generation on the first round: randommigsti E
with a budget of 1 sec. This time frame was used for both™
generation and test execution (needed to report coverage).  This section focuses oRQ3, that is, on measuring the
our system, 984 to 1124 tests are generated per each programpact of the knowledge of infeasible requirements on the
in the specified time. To increase the variability of the sigd ~ automated test generation process.

tests, we chose tests between 20 random generations wi . . .
the median number of covered requirements. The uncoverdgf©tocol- In this experiments, we consider only two ap-
requirements after this random generation step are the afpu Proaches: (1) Licov-+DSE": first use one of the detection

the infeasible detection process. In th@osterioriapproach, Method of LINCov, then the DSE test generation; (2)
we use DSE as our test generation method. The labels nofX] +LUNCOV+DSE": first exploit random testing to find easy
covered after DSEare the inputs of the detection. coverable labels, then run LNEOV, finally run the DSE test

generation to complete the test suite. Recall thatncOv

Overall, by combining the 26 pairs of programs and re-forms the implementation of the \@@WWP approach. Each
quirements with the 3 detection methods and the 3 scenariosxperiment includes both test generation and infeasitde te
a total number of 234 runs are performed. requirement detection. Various data are recorded, inquéati,

the reported coverage ratio, as well as, the time needed by

Results. A summary of our results is given in Table Il. The the test generation and by the infeasible test requirement
table records for each detection method and studied scenariletection. Note that the reported coverage ratio removea fro
the number of the considered requirements, and the totalonsideration the detected infeasible labels.
required time to detect infeasible labels. It also recofus t i
minimum, maximum, and arithmetic mean of the needed timé¥esults. Table Ill shows a summary of the coverage ratio

to run the detection on all programs. The average times aréported by DSE for both approaches (they report the same
also represented as a bar plot on Fig. 6. coverage ratio). As a reference, we provide also the coeerag

ratio for DSE without detection and given a manual and
From these results we can see that the detection time iserfect detection of infeasible labels. It shows the threthm

reasonable. Indeed, even in the worst case (max) 130.1 sasds improve the coverage ratio. In particular the minimum
are required. Within this time, 2 out of 84 labels are detkcte coverage ratio gains goes from 90.5% to more than 95%.
These results also confirm that the required time of WP an®ur hybrid method by detecting more infeasible considgrabl
VA©GWP depend on the number of considered requirementgmpacts the reported coverage. It allows in our benchmark to
We observe a considerable decrease with the number of labaisport automatically a nearly complete coverage with a @9.2
when using WP or VASWP. The results also shows that in average coverage ratio.
the mixed scenario less than half of the time of thepriori

[ Fig. 6. Average detection time of the studied methods pesidered scenario

Impact on test generatiofiRQ3)

scenario is required on average. TABLE III. SUMMARY OF REPORTEDCOVERAGE RATIOS
Coverage ratio reported by DSE
TABLE II. D ETECTIONSPEEDSUMMARY (IN SECOND i
( 9 Detection None VA WP VA Perfect*
_ _ _ method SWP
a priori " mixed approac(]/A a posteriori " Total 90.5%|| 96.9%| 95.9% 99.2%|| 100.0%
#lLab| VA | WP GWP #lab| VA | WP GWP #lLab| VA | WP BWP Min 61.54% | 80.0%| 67.1%| 91.7%|| 100.0%
Total | 1,270| 21.5 994] 1,272]| 480|20.8 416| 548|| 121|13.4/90.5] 29.4 Max 100.00% 100.0% 100.0% 100.0% | 100.0%
Min | 10| 05| 52| 55| 0| 05 09] 1.2|| 0] 05 0.4 07 Mean 91.10%) 96.6%| 97.1% 99.2%)| 100.0%
Max | 129| 1.9| 127 130 68| 1.9(62.5 64.6 29| 1.9(50.7] 3.9 * preliminary, manual detection of infeasible labels
Mean| 48.8| 0.8/38.2| 48.9|| 18.5| 0.8|16.7| 21.9 4.7 0.8 5.7 1.8
#Lab: number of considered labels: in tagriori approach, all labels are considered, Table IV summarizes the speed_up on the total test gen-

in the a posterioriapproach, only labels not covered by DSE

and in the mixed approach, only labels not covered by thearntisting eration and infeasible label detection. We observe that the

infeasible label detection cost is not always countertzaen



by a speed-up in the test generation. In fact, for approagh (1that are better (higher ratio) and closer to the truth. Sécon
LUNcov+DSE, for both WP-based detection, a slow-down it speed-up test generation. In particular, our approaeh th
occurs. Approach (2), RFLUNCcov+DSE*, obtains better combines random testing, infeasible requirement deteetial
results with a mean speed-up of 3.8x. However, we observBSE" is on average 3.8 times faster than DSHone.

in some cases very good speed-ups with multiple two-digit

speed-ups as well as a tree-digit speed-up of 107x. Ovarll t VI. RELATED WORK

speed-up on the whole benchmark is systematically good. This section discusses techniques dealing with infeasible

Fig. 7 shows as a bar plot the average time test generatigequirements for both structural testing, VI-A, and muati
plus detection. The average time of DSHEithout detection is  testing, VI-B, as our approach applies in both contexts.
marked by a red line. It shows that the average time generatio
plus detection in both approaches and for all detection ateth A. Infeasible test requirements for structural testing
is well under the DSE line. We also observe the clear  \ost of the techniques found in literature aim at reducing
difference between the two approachestRIUNCOV+DSE"  ine effects of infeasible paths and thus, help the test géoar
being the more efficient. process. Ngo and Tan [25] suggested using trace patterns to
identify unexplored paths that are likely to be infeasilitea

TABLE V. D ETECTION AND TESTGENERATION SPEED-UP SUMMARY L
similar manner Delahayet al. [12] showed many paths are

LUNcov = VA || LUNcov = WP || LUNCOV = VAGWP infeasible due to the same reason. Thus, they suggested infe
Speedup Speedup Speedup ring what causes the infeasibility and generalize it to fifgn
Total 1.3x L1x L1x unexplored paths. They also show that when this approach
e | e o 0. 0% 0.0 is combined with dynamic symbolic execution considerable
Vean Tax 05x 0ax savings can be gained. Fraser and Arcuri [15] suggested
Total 2 A% 2 9% 2 9% aiming at all the test requirements and not separately dt eac
ETL%?COV Min 0.5x 0.1x 0.1x one. This way, the wasted effort, i.e., the effort expended o
L DSE* Max 107.0x 74.1x 55.4x generating test cases for infeasible requirements, iscestu
Mean 7.5x 5.1x 3.8x All these techniques aim at improving the efficiency of the te
- generation method and not detecting infeasible requirésnen
g Thus, they can be adopted and used instead of ourrDSE
g 400 1 DSE- Goldberget al.[17] suggested that when all the paths lead-
= ing to a test requirement are infeasible then, this requerém
g 300 207 | is infeasible_. ThL_Js, _they u_sed symbolic executio_n and _Eb'reor
= provers to identify infeasible paths and some infeasib te
_§ requirements. In a similar way, Offutt and Pan [27] used con-
g 200 - | straint based testing to encode all the constraints undiehveh
S 168 test requirement can be covered. If these constraints tdeno
o solved then, the requirements are infeasible. Howevegethe
8 100l | methods are not applicable even on small programs due to
5 the infinite number of the involved paths [40]. Additionally
s the imprecise handling of program aliases [33] and noraline
g 0 constraints [2] further reduce the applicability of the huats.

I [

LUNCOV+DSE* RT+LUNCOV+DSE" Detecting infeasible requirements has been attempted usin
Detection methods: 0ovA HBawp HavAEWP model checkers. Beyaat al. [9] integrate symbolic execution
and abstraction to generate test cases and prove the infea-
sibility of some requirements. Beckmaat al. [8] adopt the
computation of the weakest precondition to prove that some
statements are not reachable. Their aim was to formallyyeri
F. Evaluation Conclusions some properties on the tested system and not to support the

) _ testing process. This was done by Balugtaal. [5]. Baluda
RQ1. Our evaluation shows that sound static analyzers can bgt al. used model abstraction refinement based on the weakest
used to detecmnost infeasible test requwementa partlcular, precondition and integrate it with dynamic symbo"c exemut
our implementation of the greybox analysis achieves a yearlto support structural testing. Our approach differs frons th
perfect detection of infeasible test requirements. one, by using a hybrid combination of value analysis with
RQ2. Detecting infeasible requirements requires a reasonabl\éyfsike;gggsgﬁgl?jlgﬂr'ng;&iggmtslytﬁfet]t;fsge::]g?ﬁ:{?rg;ﬂoy
amount of time. Our experiment reveals the link between theqiic analysis approaches to automatically detect iitfeas
number of test requirements anql the speed of the Olete‘:t'qléquirements for a wide range of testing criteria such as the
process. Thus, we propose a simple approach that reduc%mme condition coverage and weak mutation.
significantly the time required by the analyzers through a

preliminary step of (cheap) random testing. B. Equivalent Mutants

RQ3. Detecting infeasible test requirements influences test Detecting equivalent mutants is a known undecidable prob-
generation in two ways. First, it allows us to report coverag lem [3]. This problem is an instance of the infeasibility

Fig. 7. Average detection and test generation times



problem [27] in the sense that equivalent mutants are the VII. DIsSCUSSION
infeasible requirements of the mutation criterion. Simitathe
structural infeasible requirements, very few approachést e
for equivalent mutants. We briefly discuss them here.

Our findings suggest that it is possible to identify almokt al
infeasible test requirements. This implies that the aayucd
the measured coverage scores is improved. Testers canuse ou

Baldwin and Sayward [3] observed that some mutants forniechnique to decide with confidence when to stop the testing
optimized or de-optimized versions of the original programProcess. Additionally, since most of the infeasible reeuients
and they suggested using compiler optimization techniquegan be removed, it becomes easier to target full coverage.
to detect them. This idea was empirically investigated byAccording to Frankl and lakounenko [14] this is desirabiesi
Offutt and Craft [26] and found that on average 45% ofthe majority of the faults are triggered when covering highe
all the existing equivalent mutants can be detected. Offutfoverage levels, i.e., from 80% to 100% of decision coverage

and Pan [27] model the conditions under which a mutant Although our approach handles weak mutation, it can be
can be killed as a constraint satisfaction problem. Whes thidirecﬂy applied to detect strong equivalent mutants. Adbkly
problem has no solution the mutants are equivalent. Engpiric equivalent mutants are also strongly equivalent mutarity [4
results suggest that this method can detect on average 474hd thus, our approach provides the following two benefits.
of all the equivalent mutants. Note that like in our cases¢he First, it reduces the involved manual effort of identifying
approaches aim at identifying weak equivalent mutants @td n equivalent mutants. According to Yaat al. [41], equivalent
strong ones. However, they have the inherent problems of th@utant detection techniques focusing on weak mutation have
constraint-based methods such as the imprecise handling ffe potential to detect approximately 60% of all the strong
program aliases [33] and non-linear constraints [2]. Pakad equivalent mutants. Therefore, since our approach detemts

et al. [31] demonstrated that 30% of the strongly equivalentthan 80% of the weak mutants, we can argue that the proposed
mutants can be detected by using compilers. Our approacipproach is powerful enough to detect approximately half of
differs from this one in two essential ways. First, we handlea| the involved mutants. Second, it reduces the requirae ti
weak mutants while they target strong ones. Second, Wg generate the test cases as our results show. The current
use state-of-the-art verification technologies while these  state-of-the-art in strong mutation-based test generatims
standard compiler optimizations. Note that the two appneac at weakly killing the mutants first and then at strongly kigi

are complementary for strong mutation: our method idestifie them [19], [32]. Therefore, along these lines we can target
mutants, 95%, that can be neither reached nor infeCtedewh“strong mutants after applying our approach.

the compiler technique identifies mutants, 45%, that cannot

propagate. Finally, it is noted that our method can be applied to MCDC

criterion by weakening its requirements into GACC require-
Voas and McGraw [36] suggested using program slicing tanents. GACC requirements can be encoded as labels [29].

assist the detection of equivalent mutants. This idea was de

veloped by Hierongt al. [20] who formally showed that their A. Threats to Validity and Limitations

slicing techniques can be employed to assist the identitat s it is usual in software testing studies, a major concern
of equivalent mutants and in some cases to detect some f apout the representativeness, iexternal validity of the
them. Hieronset al. also demonstrated that slicing subsumeschosen subjects. To reduce this threat we employed a recent
the constraint based technique of Offutt and_Pan [27]. Harmapenchmark set composed of 12 programs [7]. These vary both
et al. [18] showed that dependence analysis can be used {jth respect to application domain and size. We were resttic

techniques were not thoroughly evaluated since only syithe he detected infeasible requirements.

data were used. Additionally, they suffers from the inhéren

limitations of the slicing and dependence analysis teamol Another issue is thecalability of our approach since we

did not demonstrate its applicability on large programsilé/h
Other approaches tackle this problem based on mutarthis is an open issue that we plan to address in the near fitture
classification, i.e., classify likely equivalent and naquvalent  can be argued that our approach is as applicable and scalable
mutants based on run-time properties of the mutants. Schulas the techniques that we apply. We rely on Value Analysis
and Zeller [34] suggested measuring the impact of mutants oand Weakest Precondition methods as implemented within the
the program execution. They found that among several impadtRAMA-C framework. These particular implementations are
measures, coverage was the most effective one. This idea wasrrently used by industry [22, Sec. 11] to analyze safety-
extended by Kinti®t al.[21] using higher order mutants. Their critical embedded software (Airbus, Dassault, EdF) or ggcu
results indicate that higher order mutants can provide moreritical programs (PolarSSL, QuickLZ). Moreover, our irapl
accurate results than those provided by Schuler and Zellementation handles all C language constructs except of multi
Papadakiset al. [30] defined the mutation process when usingthread mechanisms and recursive functions. Thus, we lgeliev
mutant classification. They demonstrated that using mutarthat our propositions are indeed applicable to real-world
classification is profitable only when low quality test sgitee  software. Moreover, note that Weakest Precondition method
employed and up to a certain limit. Contrary to our approachare inherently scalable since they work in a modular way.
these approaches are not sound, i.e., they have many falsence, we can strongly expect that the (good) experimental
positives. They can also be applied in a complementary wayesults reported in Sec. V fawp still hold on much larger
to our approach by identifying likely equivalent mutantsrifr ~ programs. Though, the primary contribution of this artide
those not found by our approach [34]. Further details abouto demonstrate that static analysis techniques can be osed t
the equivalent mutants on other mutation domains and can laetect infeasible test requirements such as equivalerantaut
found at a relevant survey about equivalent mutants [24].  Future research will focus on scalability issues.



Other threats are due to possible defects in our tools, i.e[10]
internal validity. To reduce this threat we carefully test our
implementation. Additionally, the employed benchmarkickh 11]
has known infeasible test requirements, served as a sanigy
check for our implementation. It is noted that the employed12]
tools have also passed successfully the N&NTE V Ockham [13]
Sound Analysis Criterfathus, providing confidence on the
reported results. Furthermore, to reduce the above-meadio [14]
threats we made our tool and all the experimental subjectf
publicly availabl@. 19

Finally, additional threats can be attributed to the used*®!
measurements, i.ecpnstruct validity However, infeasible re- [17]
quirements form a well known issue which is usually acknowl-
edged by the literature as one of the most important and timE8l
consuming tasks of the software testing process. Simjldrey 19
studied criteria might not be the most appropriate ones. To
reduce this threat we used a wide range of testing criteigt m [20]
of which are included in software testing standards and argy;
among the most popular ones in the software testing litezatu

[22]

VIIl. CONCLUSION
[23]

In this paper we used static analysis techniques to detect in
feasible test requirements for several structural testiitgria,  [24]
i.e., condition coverage, multiple condition coverage amak
mutation. We leverage two state-of-the-art techniquesata
Value Analysis and Weakest Precondition, and determine(®s]
their ability to detect infeasible requirements in an awtm
and sound way. Going a step further, we proposed a lightweigltg)
greybox scheme that combines these techniques. Our eaipiric
results demonstrate that our method can detect a high ratl8’]
of infeasible test requirements, on average 95%, in a few
seconds. Therefore, our approach improves the testinggegsoc [28]
by allowing a precise coverage measurement and by speedin[%]
up automatic test generation tools.

[30]
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