Experimental study of Binary Diffing Resilience on Obfuscated Programs

DIMVA 2025

Roxane Cohen

Quarkslab & LAMSADE, CNRS

Robin David

Quarkslab

Riccardo Mori

Quarkslab

Florian Yger

LITIS - INSA Rouen

<fabrice.rossi@dauphine.psl.eu> Fabrice Rossi

CEREMADE - PSL Dauphine-University

<rdavid@quarkslab.com>

<rmori@quarkslab.com>

<florian.yger@insa-rouen.fr>

Binary diffing

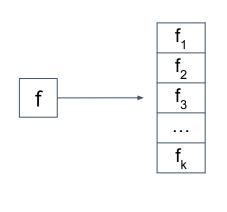
Definition

Goal is **comparing** two *(or more)* binaries to analyze their differences. It usually done using functions with a 1-to-1 mapping computation.

(which can be problematic when functions are merged or split)

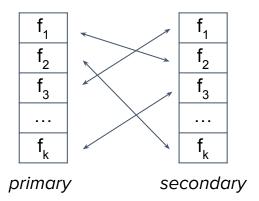
Use-cases:

- → malware diffing (analysing updates, or common components between two variants)
- → patch analysis / 1-day analysis (understanding if patch is correct, or what is 1-day about)
- → statically linked libraries identification (static binary against some libs)
- → symbol porting (e.g: IDA annotations to a new version of a binary)


⇒ Problematic: Need to diff obfuscated binaries


Diffing ain't Similarity

Similarity


Which function is the **most similar** to *f* among a pool of size *k*?

Matching

What is the **best mapping** between functions of primary and secondary?

Diffing = Similarity + Matching

(from similarity scores, create an assignment...)

Diffing **normal** binaries

Diffing

- Multiple granularity (function, basic-block, instruction) [1, 2, 3]
- Binary features: Call-Graph, Control-Flow Graph, assembly code [1, 2, 3, 4]

- [1] Dullien and al. **Structural comparison of executable objects**, 2004
- [2] Dullien and al. **Graph-based comparison of executable objects**, 2005
- [3] https://github.com/joxeankoret/diaphora
- [4] Mengin and al. Binary Diffing as a Network Alignment Problem via Belief Propagation, 2021.

Similarity (only)

- Usually at the function level
- Well adapted in a cross-compiler, cross-architecture and cross-optimization setting [5, 6, 7, 8]
- > Binary features: function only
- [5] Wang and al. jTrans: Jump-Aware Transformer for Binary Code Similarity. 2022
- [6] Li and al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 2019
- [7] Marcelli and al. **How Machine Learning Is Solving the Binary Function Similarity Problem.** 2022
- [8] He and al. Code is not Natural Language: Unlock the Power of Semantics-Oriented Graph Representation for Binary Code Similarity Detection. 2024

Diffing **obfuscated** binaries

State-of-the-Art

Diffing

- Semantic features (symbolic) adapted for matching different granularities (basic-block or path) [1, 2]
- Obfuscation techniques that adversarially disturbs differs [3]
- [1] Luo and al. Semantics-based obfuscation-resilient binary code similarity comparison with applications to software plagiarism detection. 2014
- [2] Gao and al. **Binhunt: Automatically finding semantic differences in binary programs**. 2008
- [3] Zhang and al. Khaos: The Impact of Inter-procedural Code Obfuscation on Binary Diffing Techniques, 2023

Similarity (only)

- Small experiments on OLLVM-only obfuscated binaries [4, 5]
- Limited set on obfuscations / obfuscation types

- [4] Kim and al. Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons, 2022
- [5] Ding and al. Asm2vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization, 2019

Using multiple binary variants to infer knowledge between binaries

- An attacker obtains a "plain" binary and an "obfuscated" newer variant
- An attacker gets its hands on two obfuscated variants (of the same program)

Core concept:

- <u>Idea</u>: Multiple binary variants can help to **draw correlations** between program content
- Advantage: Comparing binaries without having to deobfuscate them.
- Why: weaken the obfuscation security*

ApkDiff: Matching Android App Versions Based on Class Structure, De Ghein and al., 2022

Problematics & Contributions

Current limitations

- Standard differs are not suited for obfuscated binaries
- No satisfactory dataset (not enough data, code snippet, only OLLVM...)
- Limited work on diffing in an obfuscated setting

Contributions

- Creating a realistic and large obfuscated dataset
- Comparing differs ability to recover correspondence between obfuscated binaries in two settings: plain-vs-obfuscated and obfuscated-vs-obfuscated
- Evaluating an obfuscation / obfuscator robustness according to its ability to prevent computing the correspondence between obfuscated binaries

	Passes	Pass type	zlib	lz4	minilua	sqlite	freetype
	Сору	Inter	~	~	~	V	V
	Split	Inter	~	~	~	V	~
	Merge	Inter	~	~	X	X	~
	CFF	Intra	V	~	V	V	V
Т:	Virtualize	Intra	V	~	~	~	X
Tigress	Opaque	Intra	V	~	V	X	~
	EncodeArithmetic (Enc.A)	Data	~	~	V	V	~
	EncodeLiterals (Enc.L)	Data	~	~	~	~	~
	Mix	Intra & Data	~	~	~	~	~
	Mix + Split	All	V	~	~	~	~
	CFF	Intra	V	~	~	V	V
OLLVM-14	Opaque	Intra	~	~	~	V	~
OLLVIVI-14	EncodeArithmetic (Enc.A)	Data	~	~	V	V	V
	Mix	Intra & Data	V	~	~	~	~

Projects strongly limited by Tigress ability to obfuscate whole projects (its file merging is limited)

Evaluating diffing and similarity tools

Differs

Use standard binary differs:

- BinDiff [1, 2]
- Diaphora [3]
- QBinDiff [4]

- [1] Dullien and al. **Structural comparison of executable objects**, 2004
- [2] Dullien and al. **Graph-based comparison of executable objects**, 2005
- [3] https://github.com/joxeankoret/diaphora
- [4] Mengin and al. **Binary Diffing as a Network Alignment Problem via Belief Propagation**, 2021.

Similarity tools

Use state-of-the-art similarity approaches

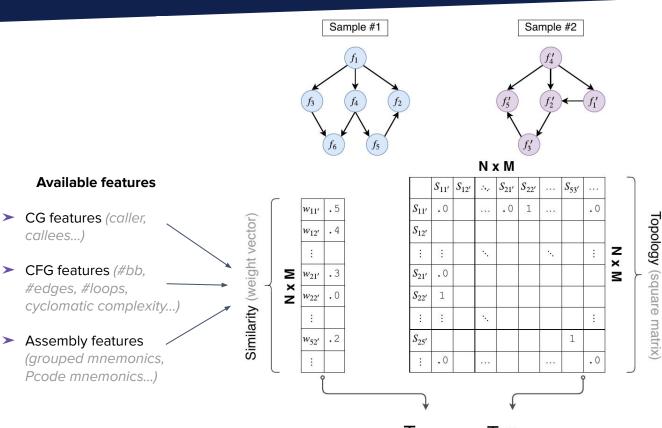
- Asm2vec [5]
- JTrans [6]
- GMN [7]
- ⇒ Combined with Hungarian algorithm (optimal but n³)
- [5] Ding and al. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. 2019
- [6] Wang and al. jTrans: Jump-Aware Transformer for Binary Code Similarity. 2022
- [7] Li and al. **Graph Matching Networks for Learning the Similarity of Graph Structured Objects.** 2019

Diffing Evaluation

Comparing the *Ground-Truth* functions pairs and the differ's functions pairs?

True Positives
good match
correctly identified

False Positives
wrong match
identified


True Negative
Not a match
considered as-is

False Negative
Good match not
identified

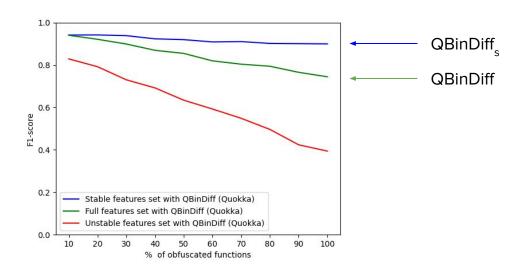
Precision =
$$\frac{}{ + }$$
 Recall =
$$\frac{}{ + }$$
 F1-score = $2 \times \frac{P \times R}{P + R}$

QBinDiff: A Modular differ

Goal

Solve an instance of the **Network Alignment Problem**

Arbitrate between function similarity and call-graph topology to be more resilient if one of them is altered (+ still use imported functions as anchors)


Resilient features against an obfuscation

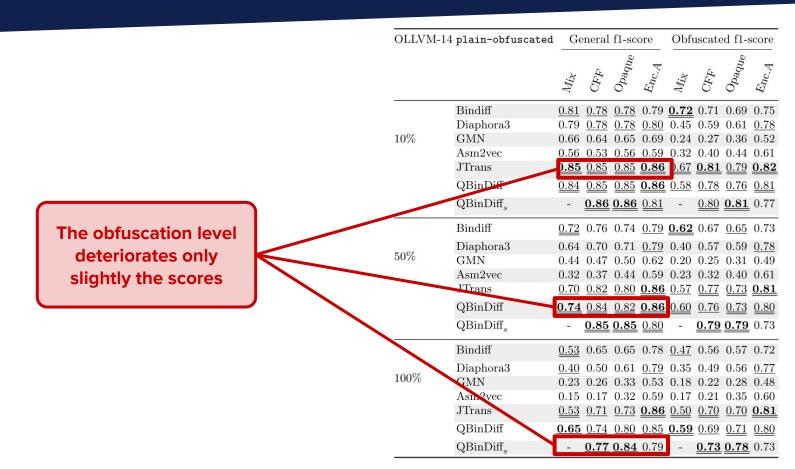
	BBlockNb	SCComponents	BytesHash	Cyclomatic Complexity		JumpNb	SmallPrimeNumbers	MaxParentNb	MaxChildNb	MaxInsNb	MeanInsNb	lnsNb	${ m GraphMeanDegree}$	GraphDensity	GraphNbComponents	Graph Diameter	GraphTransitivity	GraphCommunities	Address	DatName	FuncName	ChildNb	ParentNb	RelativeNb	LibName	ImpName	Constant	StrRefs	MnemonicSimple	MnemonicTyped	GroupsCategory	ReadWriteAccess	
Merge Split	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	~	V	V	X	X	X	X	X	X	V	V	V	V	V	V
Copy	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	~	V	X	X	X	X	X	X	V	V	V	V	V	V
Intra Data	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X				~			V					×			×

Feature impact on diffing

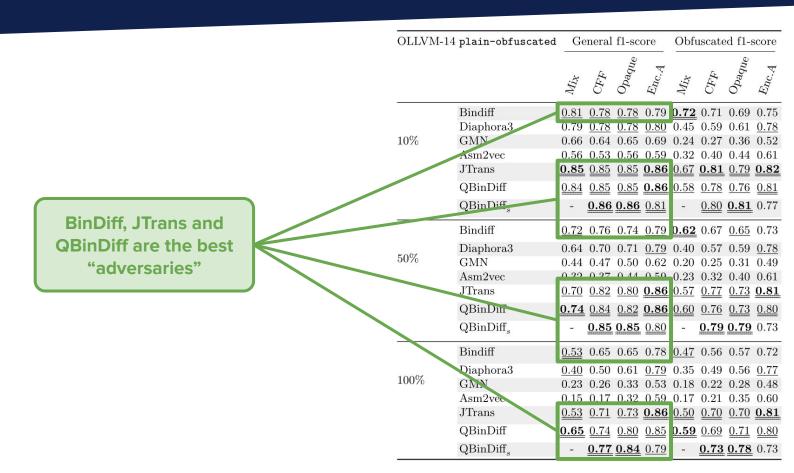
QBinDiff feature impact : stable, full and unstable features (Control-Flow Graph Flattening f1-score evolution)

Characterize the obfuscation ⇒ adapt the features for better diffing results

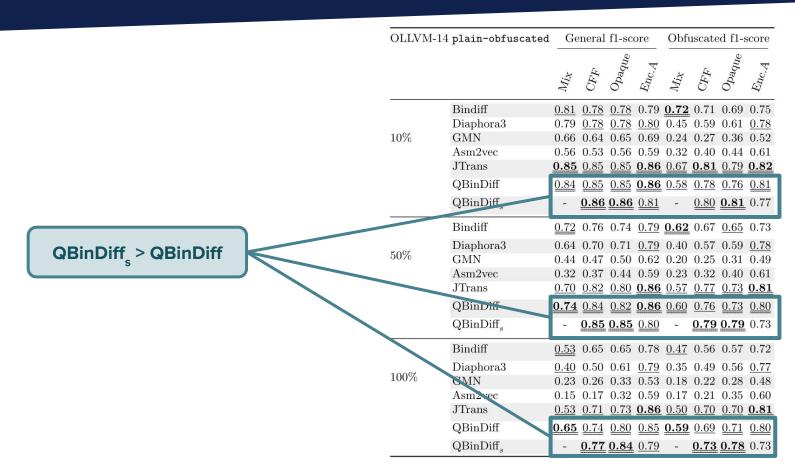
Q

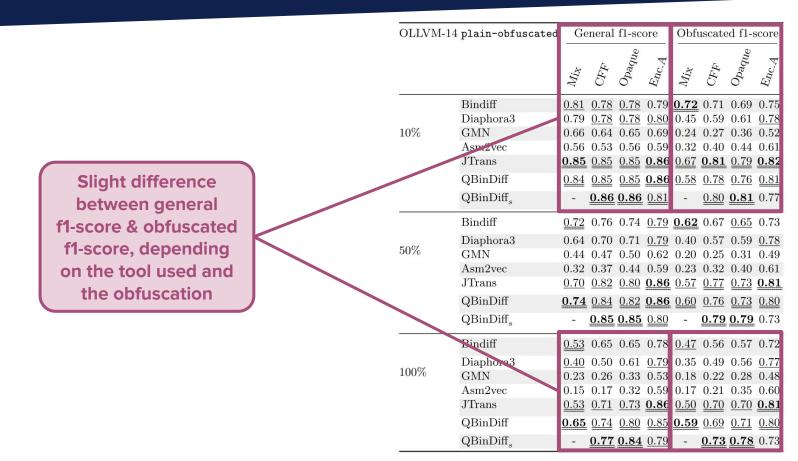

- → f1-score comparison
- ObfuBench dataset (stripped binaries)
- → the higher, the better
- → Columns:
 - o General: all functions together
 - o Obfuscated: solely obfuscated functions

OLLVM-14	plain-obfuscated	Ge	eneral	f1-sc	ore	Obfuscated f1-score					
		M_{i_X}	CF_F	O_{paque}	$E_{nc.A}$	Mi_X	CFF	O_{paque}	$E_{Dc.A}$		
	Bindiff	0.81	0.78	0.78	0.79	0.72	0.71	0.69	0.75		
	Diaphora3	0.79	0.78	0.78	0.80	0.45	0.59	0.61	0.78		
10%	GMN	0.66	0.64	0.65	0.69	0.24	0.27	0.36	0.52		
	Asm2vec	0.56	0.53	0.56	0.59						
	JTrans	0.85	0.85	0.85	0.86	0.67	0.81	0.79	0.82		
	QBinDiff	0.84	0.85	0.85	0.86	0.58	0.78	0.76	0.81		
	$\mathrm{QBinDiff}_s$	-	0.86	0.86	<u>0.81</u>	-	<u>0.80</u>	0.81	0.77		
	Bindiff	0.72	0.76	0.74	0.79	0.62	0.67	0.65	0.73		
	Diaphora3	0.64	0.70	0.71	0.79	0.40	0.57	0.59	0.78		
50%	GMN	0.44	0.47	0.50	0.62	0.20	0.25	0.31	0.49		
	Asm2vec	0.32	0.37	0.44	0.59	0.23	0.32	0.40	0.61		
	JTrans	0.70	$\underline{0.82}$	0.80	0.86	0.57	$\underline{0.77}$	0.73	0.81		
	QBinDiff	0.74	0.84	0.82	0.86	<u>0.60</u>	0.76	0.73	0.80		
	$\mathrm{QBinDiff}_s$	-	0.85	0.85	<u>0.80</u>	-	0.79	0.79	0.73		
	Bindiff	0.53	0.65	0.65	0.78	0.47	0.56	0.57	0.72		
	Diaphora3	0.40	0.50	0.61	0.79	0.35	0.49	0.56	0.77		
100%	GMN	0.23	0.26	0.33	0.53	0.18	0.22	0.28	0.48		
	Asm2vec	0.15	0.17	0.32	0.59	0.17	0.21	0.35	0.60		
	JTrans	$\underline{0.53}$	0.71	$\underline{0.73}$	0.86	$\underline{0.50}$	<u>0.70</u>	0.70	0.81		
	QBinDiff	0.65	0.74	0.80	0.85	0.59	0.69	0.71	0.80		
	$\mathrm{QBinDiff}_s$	-	0.77	0.84	0.79	-	0.73	0.78	0.73		



OLLVM-14 plain-obfuscated General f1-score Obfuscated f1-score Bindiff 0.81 0.78 0.78 0.79 **0.72** 0.71 0.69 0.75 Diaphora3 0.79 0.78 0.78 0.80 0.45 0.59 0.61 0.78 GMM 10% $0.66\ 0.64\ 0.65\ 0.69\ 0.24\ 0.27\ 0.36\ 0.52$ Asm2vec $0.56 \ 0.53 \ 0.56 \ 0.59 \ 0.32 \ 0.40 \ 0.44 \ 0.61$ **JTrans 0.85** 0.85 0.85 **0.86** 0.67 **0.81** 0.79 **0.82 QBinDiff** 0.84 0.85 0.85 **0.86** 0.58 0.78 0.76 0.81 **OLLVM** scores are QBinDiff. **0.86 0.86** 0.81 0.80 **0.81** 0.77 high, no matter the Bindiff 0.72 0.76 0.74 0.79 **0.62** 0.67 0.65 0.73 differ, the type or level Diaphora3 0.64 0.70 0.71 0.79 0.40 0.57 0.59 0.78 50% CMN of obfuscation 0.44 0.47 0.50 0.62 0.20 0.25 0.31 0.490.32 0.37 0.44 0.59 0.23 0.32 0.40 0.61 Asm2vec JTrans 0.70 0.82 0.80 **0.86** 0.57 0.77 0.73 **0.81 QBinDiff 0.74** 0.84 0.82 **0.86** 0.60 0.76 0.73 0.80 QBinDiff. **0.85 0.85** 0.80 **0.79 0.79** 0.73 Bindiff <u>0.53</u> 0.65 0.65 0.78 <u>0.47</u> 0.56 0.57 0.72 Diaphore3 $0.40 \ 0.50 \ 0.61 \ 0.79 \ 0.35 \ 0.49 \ 0.56 \ 0.77$ 100% **GMN** $0.23 \ 0.26 \ 0.33 \ 0.53 \ 0.18 \ 0.22 \ 0.28 \ 0.48$ Asm2vec $0.15 \ 0.17 \ 0.32 \ 0.59 \ 0.17 \ 0.21 \ 0.35 \ 0.60$ **JTrans** 0.53 0.71 0.73 **0.86** 0.50 0.70 0.70 **0.81** QBinDiff **0.65** 0.74 0.80 0.85 **0.59** 0.69 0.71 0.80 QBinDiff. **0.77 0.84** 0.79 **0.73 0.78** 0.73





Diffing: plain-vs-obfuscated (Tigress)

Tigress	s plain-obfuscated				Ger	neral	f1-scc	ore			26	Val			Obfu	scate	d f1-s	core			
		Mix	Mix + Split	Copy	M_{erge}	$Spli_t$	CFF	$V_{irtualize}$	O_{Paque}	$E_{nc.A}$	$E_{Dc.L}$	Mi_{x}	Mix + Split	Copy	$M_{ m erge}$	$Spli_t$	CF_F	$V_{irtualize}$	O_{Paque}	$E_{nc.A}$	$E_{Dc,L}$
	Bindiff	0.80	0.72	0.80	0.76	0.74	0.82	0.81	0.79	0.84	0.84	0.69	0.02	0.21	0.56	0.09	0.75	0.72	0.69	0.86	0.81
1 007	Diaphora3	0.75	0.67	0.76	0.73	0.70	0.76	0.74	0.75	0.78	0.79	0.34	0.02	0.46	0.34	0.08	0.52	0.04	0.66	0.77	0.78
10%	GMN	0.51	0.46	0.57	0.52	0.47	0.53	0.48	0.53	0.54	0.59	0.04	0.01	0.34	0.15	0.02	0.08	0.01	0.25	0.16	0.49
	Asm2vec	0.49	0.42	0.51	0.55	0.46	0.49	0.45	0.51	0.56	0.57	0.15	0.01			(00) (00) (00)		0.03			
	JTrans	<u>0.80</u>	0.74	0.82	0.78	<u>0.76</u>	0.84	0.80	<u>0.81</u>	0.85	0.85	0.55	0.02	0.54	0.35	0.04	0.72	<u>0.36</u>	0.74	0.87	0.88
	QBinDiff	0.84	0.77	0.86	0.82	$\underline{0.81}$	0.87	0.83	0.84	0.89	0.89	0.55	0.05	0.25	0.59	0.19	0.73	0.35	0.69	0.92	0.91
	$\mathrm{QBinDiff}_s$	-		$\underline{0.85}$	0.84	0.82	0.89	0.89	<u>0.79</u>	0.83	$\underline{0.84}$	-	-	0.25	0.60	0.22	0.85	0.79	0.65	$\underline{0.90}$	0.86
	Bindiff	0.63	0.38	0.65	0.63	0.45	0.73	0.66	0.65	0.81	0.83	0.52	0.02	0.19	0.43	0.07	0.67	0.60	0.57	0.83	0.79
	Diaphora3	0.57	0.33	0.69	0.59	0.43	0.63	0.46	0.69	0.73	0.78	0.28	0.01	0.48	0.29	0.08	0.46	0.01	0.64	0.74	0.82
50%	GMN	0.30	0.19	0.49	0.35	0.26	0.32	0.27	0.38	0.38	0.58	0.02	0.01	0.36	0.13	0.02	0.06	0.00	0.20	0.13	0.50
	Asm2vec	0.27	0.16	0.41	0.40	0.26	0.30	0.18	0.40	0.49	0.59	0.10	0.00	0.29	0.28	0.04	0.14	0.01	0.39	0.50	0.64
	JTrans	$\underline{0.64}$	0.41	0.71	0.56	$\underline{0.47}$	0.76	0.52	0.74	0.63	$\underline{0.85}$	0.46	0.01	$\underline{0.54}$	0.16	0.03	0.69	0.23	0.71	0.67	0.90
	QBinDiff	0.68	$\underline{0.45}$	$\underline{0.75}$	<u>0.70</u>	$\underline{0.56}$	0.79	0.68	$\underline{0.74}$	0.87	0.89	0.49	$\underline{0.03}$	0.26	$\underline{0.51}$	$\underline{0.17}$	0.72	$\underline{0.53}$	0.66	0.90	0.90
	$\mathrm{QBinDiff}_s$	-	-	$\underline{0.74}$	0.73	0.58	0.87	0.81	0.68	$\underline{0.82}$	0.83	-	-	0.26	0.58	0.20	0.84	0.77	0.59	<u>0.88</u>	0.87
	Bindiff	0.33	0.10	0.48	0.44	0.22	0.60	0.51	0.47	0.77	0.80	0.23	0.01	0.20	0.28	0.06	0.56	0.48	0.41	0.80	0.68
04	Diaphora3	0.27	0.09	0.64	0.38	0.25	0.46	0.10	0.61	0.66	0.76	0.19	0.01	0.50	0.28	0.07	0.43	0.01	0.61	0.71	0.78
100%	GMN	0.10	0.05	0.42	0.23	0.13	0.12	0.11	0.24	0.25	0.57	0.01	0.01	0.35	0.12	0.02	0.05	0.00	0.19	0.12	0.49
	Asm2vec	0.08	0.04	0.29	0.29	0.13	0.11	0.02	0.32	0.43	0.56	0.08	0.00	0.24	0.32	0.03	0.11	0.00	0.37	0.48	0.65
	JTrans	<u>0.46</u>	$\underline{0.21}$	0.62	0.32	$\underline{0.28}$	0.68	0.20	0.66	0.60	0.83	$\underline{0.43}$	0.01	0.54	0.14	0.03	$\underline{0.68}$	0.16	0.68	0.66	0.89
	QBinDiff	0.40	0.19	0.65	0.57	0.36	0.71	0.49	0.63	0.85	0.87	0.33	$\underline{0.02}$	0.26	0.48	0.15	0.70	0.46	0.61	0.89	0.87
	$\mathrm{QBinDiff}_s$	-	-	0.64	0.61	0.39	0.84	0.72	0.56	0.81	0.82	-	-	0.27	0.55	0.18	0.83	0.72	0.53	0.86	0.84

Diffing: plain-vs-obfuscated (Tigress)

Tigress	plain-obfuscated				Ger	neral	f1-scc	ore							Obfu	scate	d f1-s	core			
		Mix	$Mi_X + Spli_t$	Copy	M_{erg_e}	$Spli_t$	CFF	$V_{irtualize}$	O_{paque}	$E_{nc.A}$	$E_{nc.L}$	Mix	Mix + Split	Copy	M_{erg_e}	Split	CFF	$V_{irtualize}$	O_{paque}	$E_{nc.A}$	$E_{Dc,L}$
	Bindiff	<u>0.80</u>	0.72	0.80	0.76	0.74	0.82	0.81	0.79	0.84	0.84	0.69	0.02	0.21	0.56	0.09	0.75	0.72	0.69	0.86	0.81
1.007	Diaphora3	0.75	0.67	0.76	0.73	0.70	0.76	0.74	0.75	0.78	0.79	0.34	0.02	0.46	0.34	0.08	0.52	0.04	0.66	0.77	0.78
10%	GMN	0.51	0.46	0.57	0.52	0.47	0.53	0.48	0.53	0.54	0.59	0.04	0.01	0.34	0.15	0.02	0.08	0.01	0.25	0.16	0.49
	Asm2vec	0.40	0.49	0.51	0.55	0.46	0.40		0.51		0.57	0.15	0.01							0.52	
	JTrans	<u>0.80</u>	0.74										0.02								
	QBinDiff	0.84	0.77	0.86	<u>0.82</u>	<u>0.81</u>	<u>0.87</u>	0.83	0.84	0.89	0.89	<u>0.55</u>	$\underline{0.05}$	0.25	0.59	0.19	0.73	0.35	2.69	0.92	0.91
	$\mathrm{QBinDiff}_s$	-	-	$\underline{0.85}$	0.84	$\underline{0.82}$	0.89	$\underline{0.89}$	0.79	0.83	0.84	7.0	-	0.25	0.60	0.22	0.85	0.79	0.65	<u>0.96</u>	0.86
	Bindiff	0.63	0.38	0.65	0.63	0.45	0.73	0.66	0.65	0.81	0.83	0.52	0.02	0.19	0.43	0.07	0.67	0.60	0.57	0.83	0.73
	Diaphora3	0.57	0.33	0.69	0.59	0.43	0.63	0.46	0.69	0.73	0.78	0.28	0.01	0.48	0.29	0.08	0.46	0.01	0.64	0.74	0.82
50%	GMN	0.30	0.19	0.49	0.35	0.26	0.32	0.27	0.38	0.38	0.58	0.02	0.01	0.36	0.13	0.02	0.06	0.00	0.20	0.13	0.50
	Asm2vec	0.27	0.16									200000000000000000000000000000000000000	0.00								
	JTrans	$\underline{0.64}$	$\underline{0.41}$	0.71	0.56	0.47	<u>0.76</u>	0.52	0.74	0.63	0.85	0.46	0.01	0.54	0.16	0.03	0.69	0.23	0.71	3.67	0.90
	QBinDiff	$\underline{0.68}$	$\underline{0.45}$	$\underline{0.75}$	$\underline{0.70}$	$\underline{0.56}$	$\underline{0.79}$	$\underline{0.68}$	0.74	0.87	0.89	0.49	0.35	0.26	$\underline{0.51}$	$\underline{0.17}$	$\underline{0.72}$	0.53	<u>5.66</u>	0.90	0.90
	$\mathrm{QBinDiff}_s$	-	43	0.74	0.73	0.58	0.87	$\underline{0.81}$	0.68	$\underline{0.82}$	0.83	-:	-	0.26	0.58	0.20	0.84	<u>3.77</u>	0.59	$\underline{0.88}$	0.87
	Bindiff	0.33	0.10	0.48	0.44	0.22	0.60	0.51	0.47	0.77	0.80	0.23	0.01	0.20	0.28	0.06	0.56	0.48	0.41	0.80	0.68
10007	Diaphora3	0.27	0.09	0.64	0.38	0.25	0.46	0.10	0.61	0.66	0.76	0.19	0.01	<u>0.50</u>	0.23	0.07	0.43	0.01	0.61	0.71	0.78
100%	GMN	0.10	0.05	0.42	0.23	0.13	0.12	0.11	0.24	0.25	0.57	0.01	0.01	0.25	0.12	0.02	0.05	0.00	0.19	0.12	0.49
	Asm2vec	0.08	0.04	0.29	0.29	0.13	0.11	0.02	0.32	0.43	0.56	0.08	0.09	0.24	0.32	0.03	0.11	0.00	0.37	0.48	0.65
	JTrans	0.46	0.21	0.62	0.32	0.28	0.68	0.20	0.66	0.60	0.83	0.43	0.01	$\underline{0.54}$	0.14	0.03	$\underline{0.68}$	0.16	$\underline{0.68}$	0.66	0.89
	QBinDiff	0.40	0.19	0.65	0.57	0.36	0.71	0.49	0.63	0.85	0.87	<u>0.33</u>	$\underline{0.02}$	0.26	0.48	0.15	0.70	0.46	0.61	0.89	0.87
	$\mathrm{QBinDiff}_s$	-	-	0.64	0.61	0.39	0.84	0.72	0.56	0.81	0.82	-	-	0.27	0.55	0.18	0.83	0.72	0.53	0.86	0.84

Tigress associated
f1-score are
significantly lower than
OLLVM, especially for
inter-procedural
obfuscation

Results **BinKit** dataset

Binkit		Plain-	-obfus	scated	l	Obfuscated-obfuscated								
	lo	.0	свои.	$_{ccd2cue}$	SC	lo	.0	A)C	ccd2cu_e	$^{2}p_{S}$				
	looq	$^{C}\!Dio$	CP	υ	$a2p_{S}$	loo_q	$^{C}\!pi_{O}$	$c\theta_{OW}$	υ	42				
BinDiff	0.9	0.63	0.78	0.94	0.7	0.8	0.42	0.61	0.84	0.44				
Diaphora3	0.66	0.6	0.71	0.71	0.63	0.57	0.45	0.4	0.57	0.39				
GMN	0.41	0.39	0.30	0.53	0.22	0.40	0.39	0.31	0.53	0.23				
Asm2vec	0.37	0.29	0.22	0.55	0.15	0.34	0.25	0.19	0.38	0.13				
JTrans	0.86	0.80	0.84	0.90	0.69	0.70	0.55	0.55	0.66	0.42				
QBinDiff	0.96	0.92	0.91	0.98	0.82	0.9	0.82	0.82	0.91	0.7				
$\mathrm{QBinDiff}_s$	0.97	0.94	0.93	0.99	0.87	0.92	0.86	0.86	0.91	0.80				

Same trend than the previous ObfuBench experiment, even more pronounced

Real-World example: XTunnel

XTunnel

- Malware designed by APT-28
- Obfuscated with Opaque Predicates [1]
- Handmade ground-truth (costly)

(General f1-score	Obfuscated f1-score
BinDiff	0.966	0.303
$\mathrm{QBinDiff}_s$	0.97	0.915

Around 400 obfuscated functions for ~ 3500 functions

(f1-score two samples in a **plain-obfuscated** setting)

Conclusion

- Using multiple program variants helps to weaken the obfuscation
- Differs and especially Qbindiff work well on obfuscated programs (even for 100% of obfuscation)
- Intra-procedural obfuscation and data obfuscation are sensitive to this attack, contrary to inter-procedural obfuscation that impedes differs and similarity tools abilities
- Valid for a large scale obfuscated dataset (contribution) and BinKit dataset
- Valid on real-world malware samples

Thank you

Contact information:

Email:

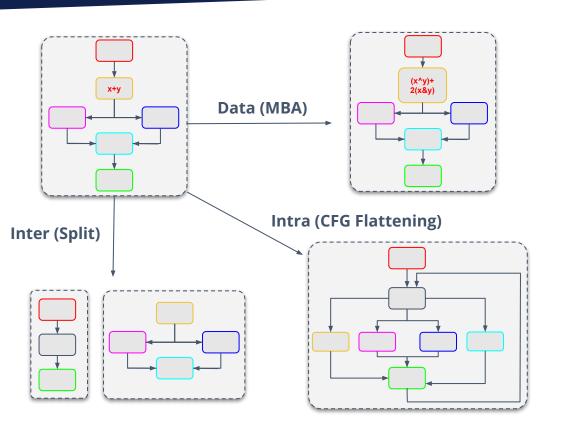
contact@quarkslab.com

Phone:

+33 1 58 30 81 51

Website:

<u>quarkslab.com</u>



@quarkslab

Obfuscation

Definition

All the techniques used to alter the syntactic properties of a program without modifying its semantics (preserving soundness)

Obfuscation types (static)

- ➤ Inter-procedural (between functions)
- Intra-procedural (inside functions)
- Data (operations, constants, strings, etc.)

		Binary diffi	ng		Binary similarity + Matching								
	Diaphora 💬	Bindiff	QBinDiff	DeepBinDiff	Asm2vec	JTrans	GMN •	SAFE					
Exporter	SQLite	Binexport	BinExport Quokka	Assembly text	Assembly text	Assembly text	ACFG	Assembly text					
Technique	Ranked heuristics	Call-Graph Propagation	Belief Propagation	Enhanced word2vec	word2vec	transformer	GNN	word2vec & self-attentive network					
Modularity	++	+	+++	+	+	+	+	+					
Settings	Function- level & One-to- many	Function- level	Function- level	Basic-Block level	Function- level	Function- level	Function-le vel	Function- level					