
Experimental study of Binary Diffing
Resilience on Obfuscated Programs

DIMVA 2025

Roxane Cohen <rcohen@quarkslab.com>
Quarkslab & LAMSADE, CNRS

Robin David <rdavid@quarkslab.com>
Quarkslab

Riccardo Mori <rmori@quarkslab.com>
Quarkslab

Florian Yger <florian.yger@insa-rouen.fr>
 LITIS - INSA Rouen

Fabrice Rossi <fabrice.rossi@dauphine.psl.eu>
 CEREMADE - PSL Dauphine-University

mailto:rdavid@quarkslab.com
mailto:rdavid@quarkslab.com

2

Binary diffing

2

Goal is comparing two (or more) binaries to analyze their differences. It usually done
using functions with a 1-to-1 mapping computation.
(which can be problematic when functions are merged or split)

Definition

Use-cases:
→ malware diffing (analysing updates, or common components between two variants)

→ patch analysis / 1-day analysis (understanding if patch is correct, or what is 1-day about)

→ statically linked libraries identification (static binary against some libs)

→ symbol porting (e.g: IDA annotations to a new version of a binary)

⇒ Problematic: Need to diff obfuscated binaries

Diffing ain’t Similarity

33

f1
f2
f3
…
fk

f

Similarity Matching

Diffing = Similarity + Matching
(from similarity scores, create an

assignment…)

Which function is the most similar to
f among a pool of size k ?

What is the best mapping between
functions of primary and secondary ?

f1
f2
f3
…
fk

f1
f2
f3
…
fk

primary secondary

Diffing normal binaries

44

➤ Multiple granularity (function,
basic-block, instruction) [1, 2, 3]

➤ Binary features : Call-Graph,
Control-Flow Graph, assembly code [1,
2, 3, 4]

Diffing

➤ Usually at the function level

➤ Well adapted in a cross-compiler,
cross-architecture and
cross-optimization setting [5, 6, 7, 8]

➤ Binary features : function only

Similarity (only)

[1] Dullien and al. Structural comparison of executable objects,
2004

[2] Dullien and al. Graph-based comparison of executable
objects, 2005

[3] https://github.com/joxeankoret/diaphora

[4] Mengin and al. Binary Diffing as a Network Alignment
Problem via Belief Propagation, 2021.

[5] Wang and al. jTrans: Jump-Aware Transformer for Binary Code
Similarity. 2022

[6] Li and al.Graph Matching Networks for Learning the Similarity
of Graph Structured Objects. 2019

[7] Marcelli and al. How Machine Learning Is Solving the Binary
Function Similarity Problem. 2022

[8] He and al. Code is not Natural Language: Unlock the Power of
Semantics-Oriented Graph Representation for Binary Code
Similarity Detection. 2024

https://github.com/joxeankoret/diaphora

Diffing obfuscated binaries

55

➤ Semantic features (symbolic) adapted
for matching different granularities
(basic-block or path) [1, 2]

➤ Obfuscation techniques that
adversarially disturbs differs [3]

Diffing

➤ Small experiments on OLLVM-only
obfuscated binaries [4, 5]

➤ Limited set on obfuscations /
obfuscation types

Similarity (only)

[1] Luo and al. Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software
plagiarism detection. 2014

[2] Gao and al. Binhunt: Automatically finding semantic
differences in binary programs. 2008

[3] Zhang and al. Khaos: The Impact of Inter-procedural
Code Obfuscation on Binary Diffing Techniques, 2023

State-of-the-Art

[4] Kim and al. Revisiting Binary Code Similarity Analysis
using Interpretable Feature Engineering and Lessons, 2022

[5] Ding and al. Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation
and compiler optimization, 2019

6

Why diffing obfuscated binaries ?

6

➤ An attacker obtains a “plain” binary and an “obfuscated” newer variant

➤ An attacker gets its hands on two obfuscated variants (of the same program)

Using multiple binary variants to infer knowledge between binaries

Core concept:

● Idea: Multiple binary variants can help to draw correlations between program content

● Advantage: Comparing binaries without having to deobfuscate them.

● Why: weaken the obfuscation security*

ApkDiff: Matching Android App Versions Based on Class Structure, De Ghein and al., 2022

*cannot compute the same property before and after the obfuscation is applied

7

Problematics & Contributions

7

➤ Creating a realistic and large obfuscated dataset

➤ Comparing differs ability to recover correspondence between obfuscated binaries in
two settings : plain-vs-obfuscated and obfuscated-vs-obfuscated

➤ Evaluating an obfuscation / obfuscator robustness according to its ability to prevent
computing the correspondence between obfuscated binaries

Contributions

➤ Standard differs are not suited for obfuscated binaries

➤ No satisfactory dataset (not enough data, code snippet, only OLLVM…)

➤ Limited work on diffing in an obfuscated setting

Current limitations

8

Our Dataset: ObfuBench

8⇒ Dataset available at: https://github.com/quarkslab/diffing_obfuscation_dataset

Projects strongly
limited by Tigress
ability to obfuscate
whole projects (its file
merging is limited)

Evaluating diffing and similarity tools

99

[1] Dullien and al. Structural comparison of executable
objects, 2004

[2] Dullien and al. Graph-based comparison of
executable objects, 2005

[3] https://github.com/joxeankoret/diaphora

[4] Mengin and al. Binary Diffing as a Network
Alignment Problem via Belief Propagation, 2021.

Use state-of-the-art similarity approaches
● Asm2vec [5]
● JTrans [6]
● GMN [7]

⇒ Combined with Hungarian algorithm
 (optimal but n3)

Similarity tools

Use standard binary differs:
● BinDiff [1, 2]
● Diaphora [3]
● QBinDiff [4]

Differs

[5] Ding and al. Asm2Vec: Boosting Static Representation
Robustness for Binary Clone Search against Code Obfuscation
and Compiler Optimization. 2019

[6] Wang and al. jTrans: Jump-Aware Transformer for Binary
Code Similarity. 2022

[7] Li and al.Graph Matching Networks for Learning the
Similarity of Graph Structured Objects. 2019

https://github.com/joxeankoret/diaphora

Diffing Evaluation

1010

F1-score = 2 x P x R
 P + R

Comparing the Ground-Truth functions pairs and the differ’s functions pairs ?

True Positives
good match

correctly identified

False Positives
wrong match

identified

True Negative
Not a match

considered as-is

False Negative
Good match not

identified

 Precision =
+

 Recall =
+ ⇒

QBinDiff: A Modular differ

1111

Goal
Solve an instance of the
Network Alignment
Problem

Arbitrate between function
similarity and call-graph
topology to be more
resilient if one of them is
altered (+ still use imported
functions as anchors)

Available features

➤ CG features (caller,
callees…)

➤ CFG features (#bb,
#edges, #loops,
cyclomatic complexity…)

➤ Assembly features
(grouped mnemonics,
Pcode mnemonics…)

Resilient features against an obfuscation

1212
Stable or unstable QBinDiff features for different obfuscation passes

Feature impact on diffing

1313

QBinDiff feature impact : stable, full and unstable features
(Control-Flow Graph Flattening f1-score evolution)

Characterize the obfuscation ⇒ adapt the features for better diffing results

QBinDiffs

QBinDiff

1414

Diffing: plain-vs-obfuscated (OLLVM)

⇢ f1-score comparison
⇢ ObfuBench dataset (stripped

binaries)
⇢ the higher, the better
⇢ Columns:

○ General: all functions together
○ Obfuscated: solely obfuscated functions

1515

OLLVM scores are
high, no matter the

differ, the type or level
of obfuscation

Diffing: plain-vs-obfuscated (OLLVM)

1616

The obfuscation level
deteriorates only
slightly the scores

Diffing: plain-vs-obfuscated (OLLVM)

1717

BinDiff, JTrans and
QBinDiff are the best

“adversaries”

Diffing: plain-vs-obfuscated (OLLVM)

1818

QBinDiffs > QBinDiff

Diffing: plain-vs-obfuscated (OLLVM)

1919

Asm2vec and GMN
binary similarity tools

(+ matching) show
disappointing
performances

Diffing: plain-vs-obfuscated (OLLVM)

2020

Slight difference
between general

f1-score & obfuscated
f1-score, depending
on the tool used and

the obfuscation

Diffing: plain-vs-obfuscated (OLLVM)

2121

Diffing: plain-vs-obfuscated (Tigress)

2222

Tigress associated
f1-score are

significantly lower than
OLLVM, especially for

inter-procedural
obfuscation

Diffing: plain-vs-obfuscated (Tigress)

Results BinKit dataset

2323

Same trend than the
previous ObfuBench

experiment, even
more pronounced

Real-World example : XTunnel

2424

➤ Malware designed by APT-28

➤ Obfuscated with Opaque Predicates [1]

➤ Handmade ground-truth (costly)

XTunnel

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions on obfuscated codes. 2017

(f1-score two samples in a plain-obfuscated setting)

Around 400
obfuscated functions
for ~ 3500 functions

Conclusion

2525

➤ Using multiple program variants helps to weaken the obfuscation

➤ Differs and especially Qbindiff work well on obfuscated programs (even for
100% of obfuscation)

➤ Intra-procedural obfuscation and data obfuscation are sensitive to this
attack, contrary to inter-procedural obfuscation that impedes differs and
similarity tools abilities

➤ Valid for a large scale obfuscated dataset (contribution) and BinKit dataset

➤ Valid on real-world malware samples

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

26

mailto:contact@quarkslab.com
https://quarkslab.com/

Obfuscation

All the techniques used to alter the syntactic
properties of a program without modifying
its semantics (preserving soundness)

Definition

2727

Obfuscation types (static)

➤ Inter-procedural (between functions)

➤ Intra-procedural (inside functions)

➤ Data (operations, constants, strings,

etc.)

x+y

Intra (CFG Flattening)
Inter (Split)

(x^y)+
2(x&y)

Data (MBA)

Diffing solutions

Binary diffing Binary similarity + Matching

Diaphora Bindiff QBinDiff DeepBinDiff Asm2vec JTrans GMN SAFE

Exporter SQLite Binexport
BinExport
Quokka

Assembly text
Assembly

text
Assembly text ACFG Assembly text

Technique Ranked
heuristics

Call-Graph
Propagation

Belief
Propagation

Enhanced
word2vec

word2vec transformer GNN
word2vec &
self-attentive

network

Modularity ++ + +++ + + + + +

Settings
Function-

level &
One-to-
many

Function-
level

Function-
level

Basic-Block level
Function-

level
Function-

level
Function-le

vel
Function-

level

2828

https://github.com/quarkslab/qbindiff
https://github.com/google/bindiff
https://github.com/joxeankoret/diaphora
https://github.com/yueduan/DeepBinDiff
https://github.com/Lancern/asm2vec
https://github.com/vul337/jTrans
https://github.com/Lin-Yijie/Graph-Matching-Networks
https://github.com/gadiluna/SAFE

