
Experimental Study of Binary Diffing Resilience
on Obfuscated Programs

Roxane Cohen1,2, Robin David1, Riccardo Mori1, Florian Yger3, and Fabrice
Rossi4

1 Quarkslab,
2 LAMSADE, CNRS, Université Paris-Dauphine - PSL, Paris, France

3 LITIS, INSA Rouen Normandy, Rouen, France
4 CEREMADE, CNRS, Université Paris-Dauphine - PSL, Paris, France

Abstract. Obfuscation is commonly employed to protect sensitive pro-
gram assets in legitimate use cases or to conceal malicious behavior in the
context of malware. By altering the binary code of a compiled program,
obfuscation disrupts binary analysis techniques, such as binary diffing
or similarity. However, there is little comprehensive academic research
addressing the effects of obfuscation on binary analysis tools and quanti-
fying its impact. In this study, we examine how different types of obfus-
cation influence binary diffing algorithms. Specifically, we demonstrate a
clear relationship between the type of obfuscation and the performance
of the diffing algorithms used. Our benchmarks emphasize that, contrary
to common assumptions, intra-procedural and data obfuscations have a
limited impact on binary diffing when applied alone. In contrast, inter-
procedural obfuscations significantly affect the diffing process, degrading
performances by up to 40 f1-score points when comparing low and high
obfuscation levels. These results highlight the need for modular diffing
approaches, where parameters and features can be fine-tuned to handle
adversarial scenarios, such as obfuscation. To support this research, we
have released a comprehensive dataset comprising pairs of clear and ob-
fuscated compiled programs, along with metadata specifying the type
and exact location of each obfuscation. This dataset is intended to facil-
itate further research in this area.

Keywords: Obfuscation; Binary Diffing; Machine Learning; Binary Similarity;
Malware

1 Introduction

Binary diffing is essential for reverse engineering. It is used for malware diff-
ing [33], patch analysis [43], program similarity [10], backdoor detection, anti-
plagiarism and to detect statically linked libraries. It consists in identifying sim-
ilarities between two binaries, typically at the function level. Most binary differs
use the disassembly to match the corresponding functions. Likewise, efficient
solutions have been proposed to tackle the sub-problem of binary similarity on

2 R. Cohen et al.

standard binaries in a cross-architecture, cross-compiler or cross-optimization
setting [25].
However, diffing obfuscated binaries remains an open research question. Static
or dynamic obfuscation consists in hiding the true behavior of a program and
its syntactical representation, without modifying its semantics. It is widely used
to protect application algorithms, data, and more generally, program assets. For
example, MBA (Mixed Boolean Arithmetic) [44] replaces simple arithmetic op-
erations by complex but strictly equivalent ones. As a consequence, obfuscation
may alter binary code and modify features used by binary differs to match
functions and more generally to compare programs. The assembly instructions,
function data or execution flow, and the relationships between the functions can
both be affected. Therefore, current binary differs and similarity tools may not
be adapted to this adversarial context, leading to degraded performances. Such
a case may occur if only one of the binaries is obfuscated, or if both are.

Contributions. This paper provides the first thorough experimental study of
binary diffing in the presence of obfuscated binaries. Our study covers a large
panel of state-of-the-art differs and similarity tools. We show how each of them
is affected by different obfuscation types, pointing out that intra-procedural and
data obfuscations have a limited impact on the diffing results. Contrarily, inter-
procedural obfuscation significantly limits differ’s efficiency, with a decrease up to
40 f1-score points between obfuscation levels, as most diffing algorithms rely on
the CG (Call Graph) to perform matches. Results are valuable from both reverse
engineering and software protection perspectives. A reverser may take advantage
of existing modular differs and prior knowledge about the applied obfuscation in
order to obtain a more resilient binary diffing result. Conversely, inter-procedural
obfuscation should be privileged for software protection purposes, as it impedes
most differ’s work. Our experiments are based on two real-world datasets, the
state-of-the-art BinKit dataset [19] and a new dataset dedicated to diffing and
obfuscation 5, containing more than 6,700 binaries obfuscated with two obfusca-
tors and more than 10 obfuscation passes. A real-world example of the X-Tunnel
malware illustrates the potential of such a robust diffing approach and shows its
practical usefulness.

This paper is structured as follows: Section 2 provides an overview of key con-
cepts and related works. The details of our experiments, including the dataset,
experimental setup, and the binary diffing and similarity tools used, are outlined
in Section 3. Section 4 discusses how binary diffing can be leveraged to enhance
resilience against obfuscation. The two binary diffing experiments, focusing on
cases where either one or both binaries are obfuscated, are presented in Sections
5 and 6, respectively. BinKit’s results are discussed in Section 7. In Section 8,
we showcase a real-world example with the XTunnel malware, followed by a
discussion in Section 9 and concluding remarks in Section 10.

5 https://github.com/quarkslab/diffing_obfuscation_dataset

https://github.com/quarkslab/diffing_obfuscation_dataset

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 3

2 Background and related works

2.1 Program representation

Programs are often represented by their disassembly, with functions modeled as
CFG (Control Flow Graph), where nodes are basic-blocks (sequences of instruc-
tions without branching). A CFG encodes the intra-procedural execution flow,
while the CG (Call Graph) represents inter-procedural call relationships. Both
compilation or obfuscation can significantly alter these graphs. For instance,
inlining affects the CG while loop unrolling impacts the CFG.

2.2 Binary diffing and similarity

Binary diffing usually operates at the function level and outputs a correspon-
dence between the functions of two programs, denoted as primary and secondary.
Binary diffing can be formalized as a one-to-one assignment ϕ : (P,S) 7−→ ρ
where P is the primary function set, S is the secondary function set. Then,
ρ : P −→ S is an assignment function both partial and injective, so that each
function of P should be matched to at most one function of S. This diffing is per-
formed without having access to sources and symbols. Other diffing definitions
consider different program granularities, such as basic block like DeepBinDiff[10],
or one-to-many assignment [20]. Two programs do not need to be semantically
equivalent to be efficiently diffed and small changes or light patches, induced
by program versioning or compilation difference, can be used to analyze up-
dates between binaries. BinDiff [12,11] and Diaphora [20] are the most widely
used binary differs 6. BinDiff starts by matching known imported functions and
propagates these matches to neighboring functions using the CG, discriminating
between neighbors based on function similarity. Diaphora establishes a set of
heuristics, from confident to unreliable, used to iteratively match functions. The
best heuristics are related to the function address and name, its assembly and
pseudo-code and the function hash, with less attention dedicated to CG match-
ing and other similarity measures. Both differs require disassembly as a starting
point for diffing.
The binary similarity problem, closely related to binary diffing, is applied in
order to find the most similar function to f inside a pool of candidate func-
tions. It is an active research field relying heavily on ML (Machine Learning)
and is particularly used for vulnerability search and malware analysis. Binary
similarity tools either use precomputed assembly-based features or learn them
with DL (Deep Learning), such as GNN (Graph Neural Networks). In the for-
mer category, TIKNIB [19] computes similarity scores using a specific distance
combining various handcrafted features, BinShape [36] starts by extracting fea-
tures and sorts them to obtain the top-ranked ones that are given to a decision
tree. DL techniques tend to dominate the research field and are inspired from
NLP (Natural Language Processing): Asm2Vec [9] is based on a refined and im-
proved version of the word2vec model [31]. Trex and JTrans [35,41] are directly

6 according to popularity metrics (Github downloads, stars, Google Trend).

4 R. Cohen et al.

inspired by the recent success of transformers for large language models. GNN
are also gaining more and more popularity as the latest research articles mostly
use increasingly complex GNN: current approaches use a pretrained language
model on assembly instructions as initialization for further GNN embeddings
[26]. GMN (Graph Matching Networks) [23] is the first work that jointly learns
graph embeddings on similar graph pairs rather than independent embeddings.
The idea is further developed with refined GNN architectures or language models
[39,13]. These models are subject to adversarial attacks [3].
Binary similarity and diffing share common aspects but have distinct goals.
Similarity algorithms output scores between function pairs, while diffing finds
an assignment between functions in two binaries, often using similarity scores
to establish these matches. Thus, similarity approaches when combined with a
matching algorithm can yield diffing results.

2.3 Obfuscation

Obfuscation enhances code security against reverse engineering. Native code
obfuscation (C, C++) can be source-to-source, like Tigress [6], or integrated
into compiler toolchains, like OLLVM [18]. Research has explored deobfuscation
[7,38], obfuscation detection [14], and diversification [16] which goal is to pro-
duce variants that cannot be linked with each other. Static obfuscation protects
from static analysis by altering program layout while dynamic obfuscation pro-
tects from runtime analysis. Different obfuscation passes have specific effects on
programs [34]:

– Data obfuscation alters the data-flow, e.g., hiding a XOR operation.
– Control flow obfuscation blurs the program execution flow logic. It can be

divided into :
• Intra-procedural obfuscation mutates the CFG structure. For exam-
ple, CFF (CFG Flattening) puts every basic block at the same level and
uses a dispatcher to maintain the function logic [40].

• Inter-procedural obfuscation alters the CG by modifying the relation-
ships between function callers and callees. It is damaging as CG has
been demonstrated essential for program analysis [21] (e.g, a Merge pass
fusions two functions).

While binary diffing, similarity, and obfuscation have been studied separately, no
research tackles the problem of diffing obfuscated code. Although some binary
similarity techniques include small obfuscated experiments, they are mostly lim-
ited to intra-procedural or data obfuscations from OLLVM, lacking generaliza-
tion across various obfuscations and obfuscators [9,19,36,35,17]. The limitations
of intra-procedural obfuscation in a diffing context have been demonstrated [42],
and inter-procedural obfuscation has only been studied using a symbolic execu-
tion approach [24].
Several reverse engineering use cases can benefit from efficient diffing of obfus-
cated binaries. Specifically, knowledge transfer refers to the ability to use insights

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 5

gained from analyzing one binary to infer information about its subsequent, po-
tentially obfuscated versions. This concept defines a threat model in which an
attacker can leverage knowledge from one binary to circumvent the obfuscation
applied to a new version. Such an approach has been applied to analyze obfus-
cated Android bytecode [8]. We denote this framework, where a plain binary
(unobfuscated) is diffed with an obfuscated counterpart, as plain-obfuscated
whereas the obfuscated-obfuscated setting indicates that two different obfus-
cated variants are compared. Conditions to operate such a diffing are commonly
encountered, especially for programs that tend to be frequently updated as it
is the case for Android applications. Similarly, malware are iteratively modified
and improved accross attack campaigns. Finding plain and obfuscated variants
is a common use-case [1].

3 Experimental framework

This section outlines the creation of our reference dataset and the experimental
settings used for evaluation. The dataset was designed to address the limitations
of the existing BinKit dataset [19] (see also Section 7).

3.1 Dataset

Native code obfuscation is challenging to work with as there exist few obfusca-
tors that are free or open-source. Those that are accessible only offer a limited
number of obfuscations. For example, the latest official OLLVM [18], based on
LLVM-4, exclusively provides intra-procedural obfuscations: BogusControlflow,
InstructionSubstitution and CFF. Moreover, most binaries used in the liter-
ature are basic code snippets, such as sorting algorithms, and do not represent
the complexity of true C projects. To fill the gap, and inspired by the state-of-
the-art dataset for binary similarity research [25], we created a large dataset of
realistic obfuscated binaries, with both plain binaries, obfuscated versions, and
associated ground truths.
Five realistic projects written in C are used: zlib, lz4, minilua, sqlite and
freetype. Obfuscation is applied using Tigress-3.1 [6] and OLLVM [18]. For each
obfuscator, various obfuscation passes are selected: if possible, inter-procedural,
intra-procedural and data. Because combining passes is essential to enhance secu-
rity, several obfuscation sequences are created: Mix (CFF and EncodeArithmetic

and OpaquePredicates)7, and Mix + Split when possible. The latter scheme
represents a real-world scenario where all aspects (assembly, CFG, and CG) are
altered, making the task of an (adversary) differ challenging. For each project
and obfuscation pass, we iteratively obfuscate from 10% to 100% of available
functions using a 10% incremental step to observe how differs behave with vary-
ing levels of obfuscation. Given the inherent randomness in most obfuscation

7 Obfuscation pass names are unified as they perform the same modifications but may
have been implemented differently, leading to similar passes that can be more or less
virulent. See Table 7 for details.

6 R. Cohen et al.

Passes Pass type zlib lz4 minilua sqlite freetype

Tigress

Copy Inter ✔ ✔ ✔ ✔ ✔
Split Inter ✔ ✔ ✔ ✔ ✔
Merge Inter ✔ ✔ ✗ ✗ ∼
CFF Intra ✔ ✔ ✔ ✔ ✔
Virtualize Intra ✔ ✔ ∼ ∼ ✗
Opaque Intra ✔ ✔ ✔ ✗ ∼
EncodeArithmetic (Enc.A) Data ✔ ✔ ✔ ✔ ✔
EncodeLiterals (Enc.L) Data ✔ ✔ ✔ ✔ ✔
Mix Intra & Data ✔ ✔ ✔ ∼ ∼
Mix + Split All ✔ ✔ ✔ ∼ ∼

OLLVM-14
CFF Intra ✔ ✔ ✔ ✔ ✔
Opaque Intra ✔ ✔ ✔ ✔ ✔
EncodeArithmetic (Enc.A) Data ✔ ✔ ✔ ✔ ✔
Mix Intra & Data ✔ ✔ ✔ ✔ ✔

Table 1: Obfuscated dataset sum-up. ✔ compilation success, ✗ no binaries, ∼
some binaries are not available (depends on obfuscation level or random seed used)

techniques, this process is repeated 10 times. The resulting dataset, summarized
in Table 1, contains 6,718 binaries and 8,910,962 functions, making it the first
freely available dataset of realistic obfuscated binaries at this scale.
The binaries are compiled with -O0 and -O2 optimizations for the x86-64 ar-
chitecture. The -O0 optimization prevents most compiler effects that could at-
tenuate obfuscation, such as inlining obfuscated functions or removing MBA.
This allows us to study obfuscation passes in their unaltered form. Conversely,
-O2 binaries are more representative of real-world scenarios, despite potential
biases. The goal is to demonstrate that diffing obfuscated binaries works well
both in a controlled, bias-free environment and on real-world binaries. Using
OLLVM and Tigress-3.1 introduces several constraints. OLLVM, originally de-
pendent on LLVM-4, was ported to LLVM-14 for this work and is referred to
as OLLVM-14. It offers only three intra-procedural obfuscations. Tigress-3.1 re-
quires amalgamated C files, as its cilly-merge functionality is unreliable to be
used in practice. This constraint influenced project choices, limiting them to
zlib, lz4, minilua, sqlite, and freetype, which are available in amalga-
mated form. Some Tigress binaries could not be produced due to internal errors
or compilation issues with GCC 12. Default parameters are used for Tigress, ex-
cept for the Split obfuscation where SplitCount is set to 2, and only top, block,
and deep are allowed for SplitKinds. We limit our tests to these parameters as
the resulting dataset already contains 6,700 binaries.

3.2 Experimental settings

To support these experiments, we use IDAPro-8.1, assuming it produces a proper
disassembly with a correct functions recovery. Most binary differs and binary
similarity tools also make this assumption as a basis for further analysis and
tackling disassembly issues is out of scope of this research. Various binary dif-
fers are selected: BinDiff [12,11] and Diaphora-3.0.0 [20]. Both are tested with
default parameters. QBinDiff-1.2.0 [29,30], which is a modular differ that can

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 7

be fine-tuned depending on the user goal, is also evaluated with two different
configurations, explained in Section 4. Moreover, several binary similarity tools
are studied: GMN [23] is considered as state-of-the-art [25] as it outperforms
other similarity tools, such as SAFE [27]. Asm2Vec [9], proven to be robust
against some obfuscations, and JTrans [41], which has shown promising results,
are also considered. GMN is trained to output similarity scores on Dataset-1A
[25], which contains standard binaries, with the original GMN hyperparameters
and attributes for training. The same holds for JTrans and Asm2Vec, except for
Asm2vec for which the number of random walks is set to 3 and that assembly in-
structions are normalized. All these binary similarity approaches are combined
with the matching HA (Hungarian Algorithm) [22], with a cost matrix built
over embeddings, in order to obtain a proper diffing output, from their similar-
ity scores. We use the same Euclidean distance for all the binary similarity tools,
like in the GMN framework [23]. Evaluating a differ efficiency requires to com-
pare its results to the expected matching, called ground truth. Such a ground
truth is built as follows:

– Data and intra-procedural obfuscations are applied within the function scope.
These techniques will preserve the function name.

– Inter-procedural obfuscation alters the CG structure. Each type of obfusca-
tion has a specific ground truth. For example:
• A function f in primary split into f1 and f2 in the secondary should be

matched with both f1 and f2.
• Functions f1 and f2 merged into a single function f in the secondary
should be matched with both f1 and f2 in the primary.

• A function f cloned into f1 in the secondary should be matched with
both f and f1 in the secondary.

This process can be extended to any number of split, merged, or cloned
functions.

The ground-truth is defined at the function level since both Tigress and OL-
LVM can target specific functions, preserving the original mappings. Function-
level granularity is necessary because basic-block-level ground truth cannot be
computed for several obfuscations, such as Virtualization, which significantly
alters a function’s control flow. Maintaining correspondence at the basic-block
level becomes impractical. As a result, we focus exclusively on function-level dif-
fers, excluding basic-block-level tools like DeepBinDiff [10] or BinSim [32], where
accurate ground-truth cannot be established.
This inter-procedural ground-truth penalizes one-to-one diffing methods, as dif-
fers recover at most one correct match (either none or one), thus limiting the
recall. All diffing and similarity tools evaluated in this paper are subjected to this
penalty. After determining matches based on function names, the binaries are
stripped to remove symbols, including function names. To compare the ground
truth assignments with the diffing results, three standard metrics are considered:
recall (R), precision (P), and f1-score, defined as:

P = TP
TP+FP R = TP

TP+FN f1-score = 2×P×R
P+R

8 R. Cohen et al.

with TP denoting True Positive, FP False Positive and FN False Negative.

Precision denotes how many retrieved items are relevant whereas the recall in-
dicates how many relevant items are retrieved. Maximizing the f1-score requires
both the recall and precision to be high.8 Notice that even though similarity
scores may decrease, due to small patches or differences, differs may still find
the correct matches. Two f1-scores can be computed: a general f1-score applied
on the whole binary, whereas an obfuscated f1-score is limited to obfuscated
functions only. The higher these f1-scores, the better the differ is. If a significant
difference exists between the general and obfuscated f1-scores, it implies that
binary differs are correctly able to match regular functions but that they face
trouble to do the same for obfuscated functions.
Finally, experiments were conducted on a Debian-6.1.27-1 with an Intel Xeon
E3-12xx v2, 20 cores and 70GB of RAM. Binary similarity experiments require
a GPU and were launched with a Nvidia RTX A6000.

4 Resilient diffing

10 20 30 40 50 60 70 80 90 100
% of obfuscated functions

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

■ stable features (QBinDiffs) ■ all available features (QBinDiff) ■ unstable features.

Fig. 1: Obfuscated zlib (Tigress CFF). QBinDiff f1-scores with respect to the
% of obfuscated functions.

This Section illustrates how to obtain an obfuscation-resilient binary diffing on
a concrete example. Extended results are available in Section 5 and 6. Existing
differs have not been designed to handle obfuscated binaries. Besides chang-
ing function, basic-block order strategies, BinDiff cannot be adjusted. Similarly,
tuning Diaphora for obfuscation purpose is challenging due to the multitude of
heuristics, some considered reliable and others not, for which there is no clear

8 The exact matching is known and using precision, recall and f1-score is consequently
accurate. Binary similarity tools often rely on precision@k or recall@k as they search
the most similar functions inside a pool of size k.

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 9

analysis of the order in which they should be applied and their influence on the
final diffing process. QBinDiff was designed to be modular in order to leverage bi-
nary diffing for specific use cases. It enables the precise selection of features used
to compute the similarity, which is then used to identify matches [4]. This mod-
ularity helps to obtain more accurate diffing results confronted with obfuscation,
especially if its type is known. Such a knowledge can be obtained manually with
reverse-engineering as some obfuscations, like CFF or MBA, exhibit very specific
patterns, or with machine learning algorithms that directly infer if a function has
been obfuscated and how [5]. Even though these machine learning algorithms do
not exhibit perfect scores and suffer from several limitations, such as degraded
performances for some optimization levels, they are still resilient enough to give
an overview on the applied obfuscation within a binary. As a consequence, given
an obfuscation found within a binary, it is possible to determine binary features
that have likely been impacted by the obfuscation and choose to exclude them
from the diffing process. Data obfuscations, such as MBA, significantly inflate the
basic-block length without altering the CG and CFG structures, meaning that
CFG and CG features such as the cyclomatic complexity or the number of chil-
dren of a function will be unaffected. Similarly, intra-procedural obfuscations,
such as Virtualization, strongly modify the CFG topology but do not impact
the CG. Inter-procedural obfuscations, however, transform the CG topology and
tend to also affect the corresponding CFG of functions impacted by the obfus-
cation. For instance, when two functions are merged, both the overall function
relationships within the program and the CFG of the merged functions are re-
structured resulting in a unique CFG. As a consequence, only a limited set of
features remain unaffected by this obfuscation type. We manually establish two
obfuscation-dependent feature sets: a set consisting solely of unstable features
directly impacted by an obfuscation, and a stable feature set, available in Table
8. These features sets have been determined by reasoning about each obfuscation
and comparing unobfuscated functions to their obfuscated counterparts. If no
knowledge of the obfuscation can be extracted from a binary, default features
can be used, otherwise curated stable features should be selected. In this experi-
ment, we aim to analyze the effect of these feature sets on the final diffing result.
For each Tigress and OLLVM-14 obfuscations, QBinDiff is applied with these
three configurations on the zlib project, compiled with -O0. The Figure 1 high-
lights the difference between the standard QBinDiff differ (QBinDiff), where all
the features are naively enabled, and a refined QBinDiffs on a Tigress CFF pass
applied on zlib. Figures concerning other obfuscations are not shown as they
depict the same trend. In particular, this experiment reveals how much a differ
can be feature-dependent. The standard set of features should be used as a start-
ing point and can be adapted to account for expert knowledge (for instance use
the corresponding QBinDiffs in presence of intra-procedural obfuscation). More-
over, it is fundamental to not use only features that are vulnerable to the same
changes, as the unstable features provide degraded performances. For the rest of
the paper, QBinDiff denotes the standard QBinDiff algorithm with the default
feature set and illustrates the case where a reverse engineer does not have addi-

10 R. Cohen et al.

tional knowledge about the obfuscated binary. QBinDiffs indicates the adjusted
QBinDiff with the stable feature set given a specific obfuscation and represents
the best-case scenario, where preliminary knowledge about the obfuscation type
was extracted with confidence.

5 Plain against obfuscated

This Section focuses on the plain-obfuscated experiment and examines the im-
pact of obfuscation on binary diffing and similarity when only the second binary
is obfuscated, while the first remains unmodified. This scenario is relevant for
cases where newer binary versions are obfuscated, such as Android applications
or malware.

OLLVM-14 plain-obfuscated General f1-score Obfuscated f1-score
M
ix

C
F
F

O
p
aq
u
e

E
n
c.
A

M
ix

C
F
F

O
p
aq
u
e

E
n
c.
A

10%

Bindiff 0.81 0.78 0.78 0.79 0.72 0.71 0.69 0.75
Diaphora3 0.79 0.78 0.78 0.80 0.45 0.59 0.61 0.78
GMN 0.66 0.64 0.65 0.69 0.24 0.27 0.36 0.52
Asm2vec 0.56 0.53 0.56 0.59 0.32 0.40 0.44 0.61
JTrans 0.85 0.85 0.85 0.86 0.67 0.81 0.79 0.82

QBinDiff 0.84 0.85 0.85 0.86 0.58 0.78 0.76 0.81

QBinDiffs - 0.86 0.86 0.81 - 0.80 0.81 0.77

50%

Bindiff 0.72 0.76 0.74 0.79 0.62 0.67 0.65 0.73

Diaphora3 0.64 0.70 0.71 0.79 0.40 0.57 0.59 0.78
GMN 0.44 0.47 0.50 0.62 0.20 0.25 0.31 0.49
Asm2vec 0.32 0.37 0.44 0.59 0.23 0.32 0.40 0.61
JTrans 0.70 0.82 0.80 0.86 0.57 0.77 0.73 0.81

QBinDiff 0.74 0.84 0.82 0.86 0.60 0.76 0.73 0.80

QBinDiffs - 0.85 0.85 0.80 - 0.79 0.79 0.73

100%

Bindiff 0.53 0.65 0.65 0.78 0.47 0.56 0.57 0.72

Diaphora3 0.40 0.50 0.61 0.79 0.35 0.49 0.56 0.77
GMN 0.23 0.26 0.33 0.53 0.18 0.22 0.28 0.48
Asm2vec 0.15 0.17 0.32 0.59 0.17 0.21 0.35 0.60
JTrans 0.53 0.71 0.73 0.86 0.50 0.70 0.70 0.81

QBinDiff 0.65 0.74 0.80 0.85 0.59 0.69 0.71 0.80

QBinDiffs - 0.77 0.84 0.79 - 0.73 0.78 0.73

Table 2: Averaged f1-score comparison on OLLVM-14 obfuscations,
plain-obfuscated setting. First, second and third best differs are dis-
played for each obfuscation and obfuscation level.

Tables 2 and 3 present the OLLVM-14 and Tigress results, respectively, show-
ing the outcomes for all obfuscation passes across five projects, averaged for
10%, 50%, and 100% obfuscation levels, with both -O0 and -O2 optimizations.
The 10% obfuscation level simulates a situation where a defender has a lim-
ited obfuscation budget, either due to memory or computational constraints.
This is common in embedded systems, where MCUs have limited storage and
processing power, and only a small subset of critical functions are obfuscated

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 11

for security. The 50% obfuscation level represents a guideline for achieving a
reasonable tradeoff between security and efficiency. In practice, applying this
amount of obfuscation often requires a deeper understanding of the criticality
distribution over the functions, as well as the system constraints. Certain func-
tions, that might precisely be the critical functions that one needs to obfuscate,
could be highly sensitive to the obfuscation computational overhead, leading to
prohibitive execution time for resource-constrained systems, such as MCUs. The
100% level depicts the worst-case scenario for an attacker.

Tigress plain-obfuscated General f1-score Obfuscated f1-score

M
ix

M
ix

+
S
p
li
t

C
op
y

M
er
ge

S
p
li
t

C
F
F

V
ir
tu
al
iz
e

O
p
aq
u
e

E
n
c.
A

E
n
c.
L

M
ix

M
ix

+
S
p
li
t

C
op
y

M
er
ge

S
p
li
t

C
F
F

V
ir
tu
al
iz
e

O
p
aq
u
e

E
n
c.
A

E
n
c.
L

10%

Bindiff 0.80 0.72 0.80 0.76 0.74 0.82 0.81 0.79 0.84 0.84 0.69 0.02 0.21 0.56 0.09 0.75 0.72 0.69 0.86 0.81

Diaphora3 0.75 0.67 0.76 0.73 0.70 0.76 0.74 0.75 0.78 0.79 0.34 0.02 0.46 0.34 0.08 0.52 0.04 0.66 0.77 0.78

GMN 0.51 0.46 0.57 0.52 0.47 0.53 0.48 0.53 0.54 0.59 0.04 0.01 0.34 0.15 0.02 0.08 0.01 0.25 0.16 0.49
Asm2vec 0.49 0.42 0.51 0.55 0.46 0.49 0.45 0.51 0.56 0.57 0.15 0.01 0.28 0.35 0.03 0.20 0.03 0.45 0.52 0.58
JTrans 0.80 0.74 0.82 0.78 0.76 0.84 0.80 0.81 0.85 0.85 0.55 0.02 0.54 0.35 0.04 0.72 0.36 0.74 0.87 0.88

QBinDiff 0.84 0.77 0.86 0.82 0.81 0.87 0.83 0.84 0.89 0.89 0.55 0.05 0.25 0.59 0.19 0.73 0.35 0.69 0.92 0.91

QBinDiffs - - 0.85 0.84 0.82 0.89 0.89 0.79 0.83 0.84 - - 0.25 0.60 0.22 0.85 0.79 0.65 0.90 0.86

50%

Bindiff 0.63 0.38 0.65 0.63 0.45 0.73 0.66 0.65 0.81 0.83 0.52 0.02 0.19 0.43 0.07 0.67 0.60 0.57 0.83 0.79

Diaphora3 0.57 0.33 0.69 0.59 0.43 0.63 0.46 0.69 0.73 0.78 0.28 0.01 0.48 0.29 0.08 0.46 0.01 0.64 0.74 0.82

GMN 0.30 0.19 0.49 0.35 0.26 0.32 0.27 0.38 0.38 0.58 0.02 0.01 0.36 0.13 0.02 0.06 0.00 0.20 0.13 0.50
Asm2vec 0.27 0.16 0.41 0.40 0.26 0.30 0.18 0.40 0.49 0.59 0.10 0.00 0.29 0.28 0.04 0.14 0.01 0.39 0.50 0.64
JTrans 0.64 0.41 0.71 0.56 0.47 0.76 0.52 0.74 0.63 0.85 0.46 0.01 0.54 0.16 0.03 0.69 0.23 0.71 0.67 0.90

QBinDiff 0.68 0.45 0.75 0.70 0.56 0.79 0.68 0.74 0.87 0.89 0.49 0.03 0.26 0.51 0.17 0.72 0.53 0.66 0.90 0.90

QBinDiffs - - 0.74 0.73 0.58 0.87 0.81 0.68 0.82 0.83 - - 0.26 0.58 0.20 0.84 0.77 0.59 0.88 0.87

100%

Bindiff 0.33 0.10 0.48 0.44 0.22 0.60 0.51 0.47 0.77 0.80 0.23 0.01 0.20 0.28 0.06 0.56 0.48 0.41 0.80 0.68

Diaphora3 0.27 0.09 0.64 0.38 0.25 0.46 0.10 0.61 0.66 0.76 0.19 0.01 0.50 0.28 0.07 0.43 0.01 0.61 0.71 0.78

GMN 0.10 0.05 0.42 0.23 0.13 0.12 0.11 0.24 0.25 0.57 0.01 0.01 0.35 0.12 0.02 0.05 0.00 0.19 0.12 0.49

Asm2vec 0.08 0.04 0.29 0.29 0.13 0.11 0.02 0.32 0.43 0.56 0.08 0.00 0.24 0.32 0.03 0.11 0.00 0.37 0.48 0.65
JTrans 0.46 0.21 0.62 0.32 0.28 0.68 0.20 0.66 0.60 0.83 0.43 0.01 0.54 0.14 0.03 0.68 0.16 0.68 0.66 0.89

QBinDiff 0.40 0.19 0.65 0.57 0.36 0.71 0.49 0.63 0.85 0.87 0.33 0.02 0.26 0.48 0.15 0.70 0.46 0.61 0.89 0.87

QBinDiffs - - 0.64 0.61 0.39 0.84 0.72 0.56 0.81 0.82 - - 0.27 0.55 0.18 0.83 0.72 0.53 0.86 0.84

Table 3: Averaged f1-score comparison on Tigress obfuscations,
plain-obfuscated setting. First, second and third best differs are dis-
played for each obfuscation and obfuscation level.

To begin with, the most promising diffing tools are QBinDiff, QBinDiffs and
JTrans, all of which achieve an f1-score of at least 0.80 for many obfuscation
passes, particularly for data and intra-procedural obfuscations. Overall, real diff-
ing tools like BinDiff, Diaphora, and QBinDiff tend to outperform some binary
similarity methods combined with a matcher, such as GMN or Asm2vec. JTrans,
however, does not face the same performance limitations as GMN or Asm2vec,
thanks to its powerful embeddings. QBinDiff generally surpasses other diffing

12 R. Cohen et al.

tools by balancing both CG structure and function similarity, whereas JTrans
relies solely on function embedding similarity, and BinDiff uses CG structure as
the foundation for match propagation.
Additionally, the differences between the general and obfuscated f1-scores de-
pend on both the type of obfuscation and the diffing tool used. Similarity tools
like GMN and Asm2vec struggle to maintain consistent f1-score range, often
favoring matching unobfuscated functions over obfuscated ones. More effective
diffing tools, such as BinDiff and, to a lesser extent, Diaphora, reduce the gap
between these scores to around 10 f1-score points for intra-procedural and data
obfuscations. For JTrans and both versions of QBinDiff, the difference is even
smaller, typically only about 5 f1-score points for lower levels of obfuscation. This
is particularly true for QBinDiffs which incorporates features that make it more
resilient to specific obfuscations. This result is surprising, as one might expect
obfuscation to completely hinder binary diffing, but this is not the case. How-
ever, for inter-procedural obfuscations, this trend no longer holds, and all the
diffing tools exhibit significant discrepancies between the f1-scores, sometimes
exceeding 60 f1-score points. This is because either the tools fail to account for
inter-procedural data, like similarity tools do, resulting in a major loss of infor-
mation, or they rely on the CG for matching, which is altered during obfuscation
and becomes unreliable, leading to poor performance, further exacerbated by the
one-to-one mapping constraint.
Moreover, QBinDiff and QBinDiffs show different behaviors. Using QBinDiffs

significantly improves performance for most inter and intra-procedural obfusca-
tions compared to QBinDiff, both for general and obfuscated f1-scores. In some
cases, it can boost the obfuscated f1-score by as much as 44 points, particularly
for the Virtualization pass. However, this improvement does not hold for
data obfuscations and the Opaque pass, where QBinDiff outperforms QBinDiffs.
This difference is due to the stable feature set used in QBinDiffs, which was
specifically designed for those obfuscations. For data obfuscations, features like
assembly mnemonics were removed, reducing the obfuscation noise, but some
deleted features may still provide useful information for matching.
In general, Tigress f1-scores are lower than those of OLLVM-14. While OLLVM-
14 lacks inter-procedural obfuscations, which would penalize diffing, its intra-
procedural and data obfuscations are less severe than Tigress’s. Tigress scores
tend to be 10 to 20 points lower in terms of f1-score. This is because Tigress
includes more advanced obfuscations, such as Virtualization, and the obfus-
cations it shares with OLLVM-14, like Opaque, are more aggressive.
Note that the results above include both -O0 and -O2 binaries.9 In general,
-O0 results tend to be higher than -O2, with the f1-score degradation in -O2
being due to inlining caused by the optimization, which causes some functions,
both obfuscated and unobfuscated, to disappear. As a result, diffing tools can
no longer match those functions, leading to a drop of f1-score.

9 Due to space limitations, we combined the -O0 and -O2 experiments, even though
they exhibit slightly different behavior in terms of diffing results. Specific -O0 and
-O2 results will be released as artifacts along with the dataset.

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 13

Overall, these results show that most diffing tools perform well on intra-procedural
and data-obfuscated binaries, even when large portions of the binary are obfus-
cated. This is primarily because these tools rely on the CG structure, which
remains unaffected by these types of obfuscations, to start matching functions.
However, inter-procedural obfuscations lead to a significant drop in f1-scores,
especially for obfuscated f1-scores. As a result, reverse engineers will face more
challenges dealing with such obfuscated variants using diffing and should pri-
oritize adaptive diffing tools like QBinDiff, which maintain the highest perfor-
mances. From a software protection standpoint, these obfuscations should be
prioritized if the goal is to counter reverse engineering attacks through diffing.

6 Obfuscated against obfuscated

In this Section, we compare two obfuscated versions of a binary to assess the
effectiveness of binary diffing and similarity tools in this complex scenario. This
use case is valuable for tracking the evolution of software obfuscation techniques
over time or for identifying variants that are more vulnerable than others.

Tigress obfuscated-obfuscated General f1-score Obfuscated f1-score

M
ix

-
M
ix

S
p
li
t
-
M
er
ge

M
er
ge

-
C
op
y

S
p
li
t
-
C
op
y

C
F
F
-
S
p
li
t

C
F
F
-
M
er
ge

C
F
F
-
C
op
y

C
F
F
-
O
p
aq
u
e

O
p
aq
u
e
-
E
n
c.
A

C
F
F
-
E
n
c.
A

M
ix

-
M
ix

S
p
li
t
-
M
er
ge

M
er
ge

-
C
op
y

S
p
li
t
-
C
op
y

C
F
F
-
S
p
li
t

C
F
F
-
M
er
ge

C
F
F
-
C
op
y

C
F
F
-
O
p
aq
u
e

O
p
aq
u
e
-
E
n
c.
A

C
F
F
-
E
n
c.
A

10%

BinDiff 0.81 0.68 0.79 0.72 0.77 0.80 0.83 0.82 0.83 0.87 0.70 0.08 0.24 0.16 0.35 0.68 0.50 0.75 0.83 0.77

Diaphora3 0.74 0.65 0.74 0.68 0.71 0.73 0.77 0.76 0.77 0.79 0.40 0.09 0.42 0.17 0.18 0.51 0.53 0.71 0.79 0.64

GMN 0.62 0.50 0.67 0.56 0.59 0.62 0.68 0.64 0.67 0.70 0.09 0.03 0.30 0.06 0.05 0.16 0.10 0.22 0.33 0.11
Asm2vec 0.55 0.47 0.55 0.46 0.50 0.37 0.56 0.56 0.58 0.61 0.19 0.05 0.31 0.08 0.11 0.27 0.21 0.40 0.57 0.25
JTrans 0.79 0.70 0.79 0.71 0.77 0.78 0.82 0.82 0.83 0.86 0.43 0.05 0.37 0.15 0.26 0.49 0.50 0.75 0.83 0.73

QBinDiff 0.83 0.73 0.82 0.75 0.81 0.83 0.85 0.85 0.86 0.88 0.53 0.15 0.25 0.20 0.33 0.66 0.48 0.69 0.80 0.69

50%

BinDiff 0.55 0.40 0.57 0.38 0.46 0.59 0.60 0.63 0.71 0.80 0.40 0.06 0.18 0.11 0.24 0.43 0.38 0.51 0.66 0.69

Diaphora3 0.53 0.40 0.60 0.37 0.39 0.52 0.58 0.65 0.69 0.67 0.41 0.07 0.35 0.15 0.13 0.36 0.43 0.64 0.72 0.55

GMN 0.32 0.25 0.43 0.24 0.27 0.32 0.36 0.34 0.40 0.42 0.09 0.02 0.18 0.04 0.03 0.07 0.06 0.11 0.18 0.05
Asm2vec 0.32 0.21 0.29 0.19 0.20 0.27 0.29 0.32 0.50 0.39 0.20 0.04 0.16 0.06 0.07 0.20 0.13 0.28 0.53 0.16
JTrans 0.57 0.43 0.59 0.36 0.45 0.53 0.62 0.72 0.55 0.61 0.38 0.02 0.24 0.11 0.19 0.24 0.43 0.66 0.50 0.47

QBinDiff 0.61 0.48 0.63 0.43 0.52 0.67 0.66 0.72 0.78 0.81 0.43 0.11 0.19 0.17 0.28 0.55 0.43 0.61 0.70 0.64

100%

BinDiff 0.49 0.25 0.36 0.14 0.13 0.38 0.24 0.40 0.39 0.53 0.32 0.04 0.08 0.05 0.06 0.15 0.13 0.21 0.40 0.48

Diaphora3 0.67 0.23 0.32 0.22 0.14 0.32 0.37 0.55 0.39 0.33 0.61 0.03 0.15 0.14 0.09 0.24 0.36 0.53 0.54 0.42

GMN 0.30 0.18 0.25 0.10 0.08 0.23 0.13 0.16 0.16 0.13 0.18 0.01 0.04 0.03 0.02 0.04 0.04 0.02 0.06 0.04
Asm2vec 0.41 0.06 0.08 0.08 0.05 0.16 0.08 0.18 0.33 0.14 0.35 0.03 0.06 0.05 0.05 0.17 0.09 0.18 0.44 0.13

JTrans 0.71 0.27 0.35 0.19 0.21 0.34 0.43 0.64 0.36 0.41 0.52 0.01 0.06 0.09 0.15 0.12 0.38 0.51 0.29 0.34

QBinDiff 0.70 0.32 0.41 0.25 0.24 0.61 0.46 0.66 0.48 0.56 0.51 0.07 0.12 0.13 0.18 0.49 0.38 0.49 0.39 0.60

Table 4: Averaged f1-score comparison on Tigress obfuscations,
obfuscated-obfuscated setting. First, second and third best differs are
displayed for each obfuscation and obfuscation level.

For brevity, we only present Tigress results in Table 4, as the OLLVM results
follow the same pattern but show higher f1-scores, similar to what we observed
in the previous plain-obfuscated experiment. We have chosen to focus on

14 R. Cohen et al.

a subset of possible obfuscated-obfuscated pairs, prioritizing intra-intra, inter-
inter, and inter-intra pairs when available. This decision is based on the results
of the first plain-obfuscated experiment, where data obfuscations yielded less
insightful results compared to other obfuscation types. The Mix-Mix pair refers
to two binaries obfuscated with the same Mix schema but using different seeds.
Results for QBinDiffs are not available because when comparing two obfuscated
variants, unless both variants are obfuscated using the same type of obfuscation,
it is difficult to identify a set of features that are robust across different obfusca-
tion types. Neither the CG nor the CFG are reliable when comparing a variant
obfuscated with Split to one obfuscated with Virtualization. Overall, the
results reflect a similar trend to previous findings, with QBinDiff, JTrans, and
BinDiff generally being the most effective differ tools. In this scenario, JTrans
performs worse because the variants are both obfuscated, whereas JTrans was
trained on unobfuscated code, making it more reliant on plain binary code.
Although this framework may appear more challenging than the plain-obfuscated
one, f1-scores, both obfuscated and unobfuscated, remain acceptable for obfus-
cated variants without inter-procedural obfuscation, with scores reaching at least
0.70 for many pairs at lower obfuscation levels. While this trend diminishes as
the number of obfuscated functions reaches 100%, it still demonstrates that diff-
ing obfuscated variants is feasible, yielding satisfactory results, particularly with
intra-procedural or data obfuscations that preserve the CG structure for binary
diffing. These findings show that data and intra-procedural obfuscations, when
used alone, do not fully prevent binary similarity or diffing tools from working,
even though they are effective at confusing reverse engineers conducting manual
analysis. However, these obfuscations are the most commonly implemented in
open-source or free obfuscators [18,37,15]. In contrast, diffing two samples obfus-
cated with inter-procedural passes is much more challenging, with a significant
gap between the f1-scores for unobfuscated and obfuscated pairs, which remain
low, typically below 0.50 of f1-score when obfuscation exceeds 50%. Therefore,
from a reverse engineering perspective, more focus should be placed on develop-
ing new matching algorithms that can better handle transformations that disrupt
the relationships between functions. From a software protection standpoint, this
suggests a stronger emphasis on inter-procedural obfuscation to limit knowledge
transfer between binaries.

7 BinKit results

As previously mentioned, we expand on our earlier experiment using the BinKit
dataset, which includes plain binaries compiled with various compilers, versions,
optimizations, and architectures. The obfuscated binaries are exclusively com-
piled with Clang using OLLVM, with different optimizations and architectures.
We focus only on x64 binaries and limit our analysis to five projects. The obfus-
cations applied are solely intra-procedural and data obfuscations at the binary
level. The results, presented in Table 5, follow the same pattern as our previ-
ous dataset experiments, but the effects are even more pronounced. Specifically,

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 15

binary similarity tools perform notably worse than binary diffing tools, with
QBinDiff outperforming both BinDiff and Diaphora.

Binkit Plain-obfuscated Obfuscated-obfuscated

b
o
ol

cp
io

cfl
ow

cc
d
2c
u
e

a2
p
s

b
o
ol

cp
io

cfl
ow

cc
d
2c
u
e

a2
p
s

BinDiff 0.9 0.63 0.78 0.94 0.7 0.8 0.42 0.61 0.84 0.44
Diaphora3 0.66 0.6 0.71 0.71 0.63 0.57 0.45 0.4 0.57 0.39
GMN 0.41 0.39 0.30 0.53 0.22 0.40 0.39 0.31 0.53 0.23
Asm2vec 0.37 0.29 0.22 0.55 0.15 0.34 0.25 0.19 0.38 0.13
JTrans 0.86 0.80 0.84 0.90 0.69 0.70 0.55 0.55 0.66 0.42
QBinDiff 0.96 0.92 0.91 0.98 0.82 0.9 0.82 0.82 0.91 0.7
QBinDiffs 0.97 0.94 0.93 0.99 0.87 0.92 0.86 0.86 0.91 0.80

Table 5: Averaged f1-score comparison for the BinKit obfuscated dataset. First,
second and third best differs are displayed for each obfuscation and obfuscation
level.

These results, tested on a different dataset, further confirm that intra-procedural
and data obfuscations do not pose a significant barrier to binary diffing.

8 Real-world example: XTunnel

This Section aims to extend the previous experiments, conducted on a realis-
tic but yet simulated dataset, to real-world malware samples. Finding any two
malware samples is simple, whereas identifying two obfuscated versions of the
same malware is more challenging, though still achievable. However, locating
two obfuscated malware samples for which establishing a reliable ground truth
is practically feasible proves to be significantly more difficult, due to a limited
number of functions and limited obfuscation. XTunnel is among the few mal-
ware that satisfies these requirements [1]. Establishing a match between different
versions eases the reverse engineering of new variant, especially if new function-
alities have been added to the obfuscated version. We replicate only the previous
plain-obfuscated experiment, for brevity, by diffing two XTunnel samples: the
plain 42DEE and the obfuscated 99B45. The two samples contain 3,196 and
3,693 functions, respectively, with about 400 of them heavily obfuscated using
Opaque Predicates [1]. The remaining functions appear to be third-party li-
braries statically linked within the executables.
To create the ground truth for this example, we manually match functions be-
tween the plain binary 42DEE and the obfuscated variant 99B45, starting with
functions that have the same hash and then using manual reverse engineering
to identify the rest. Creating such ground truth requires significant effort and
may introduce bias, especially due to discrepancies in the number of primary
and secondary functions caused by inlining, which can affect its accuracy. As a
result, 417 primary functions and 913 secondary functions remain unmatched
due to uncertainty in their assignment.
Only QBinDiffs and BinDiff are used in this experiment. An effective differ
should produce high f1-scores for both binaries. The results, shown in Table 6,

16 R. Cohen et al.

reveal that while QBinDiffs and BinDiff are almost identical on the full set of
functions, BinDiff performs poorly on the obfuscated functions. Despite potential
bias in the ground truth, this example demonstrates that our earlier findings
remain true in real-world use cases.

General f1-score Obfuscated f1-score

BinDiff 0.966 0.303
QBinDiffs 0.97 0.915

Table 6: f1-scores for the plain-obfuscated experiment variant between sam-
ples 42DEE and 99B45.

9 Discussions

Limitations and threats to validity First, this research relies on disassembly and
functions recovered by IDA-Pro, which may lead to incomplete results due to
the complexity of these problems [28]. Additionally, some obfuscation techniques
are specifically designed to hinder disassemblers from working correctly.
Second, most differ tools are limited to one-to-one matching, which may not
be enough for obfuscated or optimized functions where a one-to-many approach
would be more appropriate. This is a complex issue, and only a few differ tools
offer solutions, with no clear way to assess their effectiveness [20].
Third, obfuscation may not achieve the desired effect in the final binary, as
the compiler can interfere with or even reverse obfuscation, given their conflict-
ing purposes. The higher the optimization level, the greater the risk that the
obfuscation will be altered. This is especially true for optimization level -O2,
which is more realistic but can remove obfuscations or apply inlining. This issue
is noticeable with newer compiler versions, such as clang-14, when using older
obfuscation techniques like OLLVM. Even at optimization level -O0, this behav-
ior can still occur, though to a lesser extent (e.g., OLLVM EncodeArith may
be simplified through constant propagation). Preventing these optimizations is
compiler-dependent and often requires tweaking internals, if even possible. For
example, constant propagation occurs both in the clang front-end and opti-
mization phase, making it difficult to disable. Source-to-source obfuscators, like
Tigress, cannot directly interact with the compiler, and most OLLVM passes are
applied before any optimization, meaning both are susceptible to simplification.
On the other hand, other compilation-pass-based obfuscators apply their trans-
formations within an optimization chain, not at the beginning, to avoid slowing
down the final binary, and not at the end, to slightly optimize the obfuscated
code for performance [2]. Determining the best way to combine optimization and
obfuscation is beyond the scope of this paper.
Fourth, this study primarily focuses on single obfuscation types, except the Mix
and Mix + Split combinations. In the Mix configuration, CFF is followed by
another intra-procedural pass and a data obfuscation. The pass order here was
fixed, and it may not be the most efficient for resisting an attacker. Similarly,
Mix combines CFF, shared by both Tigress and OLLVM-14, with slightly different

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 17

passes that modify control flow (BogusCF and Opaque) and data (InsSub and
Enc.A). This comparison evaluates an obfuscator’s effectiveness based on its
different obfuscation types, rather than the overall robustness of each pass.
Fifth, to level the playing field for all the differs, Diaphora3’s decompiler-based
features were disabled. Including them will be considered in future work.

Future Work. Studying obfuscation in all its facets remains an ongoing research
challenge, as functions, optimizations, obfuscation passes, and obfuscators are
all intertwined. There is still much work to be done. Specifically, the dataset that
we created is an initial effort to address a gap in obfuscation research. Expanding
it by incorporating additional obfuscators or more projects would be a valuable
step toward improving generalization. We plan to gradually enhance it over time.
Additionally, the relationship between an obfuscator and a differ is similar to
the dynamic between a defender and an attacker. This opens the door for ad-
versarial refinement on both sides. A defender could use diffing tools to identify
and analyze weaknesses in their obfuscations, improving their resilience against
attackers. This line of research could ultimately lead to more robust and resilient
obfuscation schemes.

10 Conclusion

This paper presents a comprehensive study of binary diffing in both plain-obfuscated
and obfuscated-obfuscated settings. We evaluate various binary differ and
similarity tools, revealing that, surprisingly, standard binary diffing methods per-
form well against intra-procedural and data obfuscations. On the other hand, the
most effective differ tools, which rely heavily on the CG, are susceptible to dis-
ruption from inter-procedural obfuscations. The modularity offered by QBinDiff
proves useful in obtaining resilient diffing results based on the type of obfus-
cation applied, showing promising outcomes. These findings demonstrate that
diffing obfuscated binaries is feasible and can yield satisfactory results in certain
cases. From a software protection perspective, they also highlight the advantages
of using more extensive inter-procedural obfuscation.

Availability

The dataset of obfuscated binaries and the artifacts are publicly released. 10

Acknowledgments. We would like to thank Bruno Mateu for porting OLLVM-4 to

OLLVM-14 and the Agence Innovation Defense (AID) that supports this research.

References

1. Bardin, S., David, R., Marion, J.Y.: Backward-bounded DSE: Targeting infeasi-
bility questions on obfuscated codes. In: 2017 IEEE Symposium on Security and
Privacy (SP). pp. 633–651 (2017). https://doi.org/10.1109/SP.2017.36

10 https://github.com/quarkslab/diffing_obfuscation_dataset

https://doi.org/10.1109/SP.2017.36
https://doi.org/10.1109/SP.2017.36
https://github.com/quarkslab/diffing_obfuscation_dataset

18 R. Cohen et al.

2. Brunet, P., Creusillet, B., Guinet, A., Martinez, J.M.: Epona and the obfuscation
paradox: Transparent for users and developers, a pain for reversers. In: Proceedings
of the 3rd ACM Workshop on Software Protection. p. 41–52. SPRO’19, Association
for Computing Machinery, New York, NY, USA (2019)

3. Capozzi, G., D’Elia, D.C., Di Luna, G.A., Querzoni, L.: Adversarial attacks against
binary similarity systems. arXiv preprint arXiv:2303.11143 (2023)

4. Cohen, R., David, R., Mori, R., Yger, F., Rossi, F.: Improving binary diffing
through similarity and matching intricacies. In: Conference on Artificial Intelli-
gence for Defense (CAID) (11 2024)

5. Cohen, R., David, R., Yger, F., Rossi, F.: Identifying obfuscated code through
graph-based semantic analysis of binary code. In: The 13th International Confer-
ence on Complex Networks and their Applications (2024)

6. Collberg, C.: The tigress C obfuscator. https://tigress.wtf/index.html (2016)
7. David, R., Coniglio, L., Ceccato, M.: Qsynth-a program synthesis based approach

for binary code deobfuscation. In: BAR 2020 Workshop (2020)
8. De Ghein, R., Abrath, B., De Sutter, B., Coppens, B.: Apkdiff: Matching android

app versions based on class structure. In: Proceedings of the 2022 ACM Workshop
on Research on Offensive and Defensive Techniques in the Context of Man At
The End (MATE) Attacks. p. 1–12. Checkmate ’22, Association for Computing
Machinery, New York, NY, USA (2022)

9. Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler opti-
mization. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE (2019)

10. Duan, Y., Li, X., Wang, J., Yin, H.: Deepbindiff: Learning program-wide code
representations for binary diffing. In: Network and distributed system security
symposium (2020)

11. Dullien, T., Rolles, R.: Graph-based comparison of executable objects (english
version). Sstic 5(1), 3 (2005)

12. Flake, H.: Structural comparison of executable objects. DIMVA 2004, July 6-7,
Dortmund, Germany (2004)

13. Gao, H., Zhang, T., Chen, S., Wang, L., Yu, F.: Fusion: Measuring binary function
similarity with code-specific embedding and order-sensitive gnn. Symmetry (2022)

14. Greco, C., Ianni, M., Guzzo, A., Fortino, G.: Explaining binary obfuscation. pp.
22–27 (07 2023). https://doi.org/10.1109/CSR57506.2023.10224825

15. Hikari: Hikari-llvm15. https://github.com/61bcdefg/Hikari-LLVM15 (2019)
16. Hosseinzadeh, S., Rauti, S., Lauren, S., Makela, J.M., Holvitie, J., Hyrynsalmi, S.,

Leppanen, V.: Diversification and obfuscation techniques for software security: A
systematic literature review. Information and Software Technology (2018)

17. Hu, Y., Zhang, Y., Li, J., Wang, H., Li, B., Gu, D.: Binmatch: A semantics-
based hybrid approach on binary code clone analysis. In: 2018 IEEE international
conference on software maintenance and evolution (ICSME). IEEE (2018)

18. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-llvm–software pro-
tection for the masses. In: Wyseur, B. (ed.) Proceedings of the IEEE/ACM 1st In-
ternational Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th,
2015 (2015)

19. Kim, D., Kim, E., Cha, S.K., Son, S., Kim, Y.: Revisiting binary code similarity
analysis using interpretable feature engineering and lessons learned. IEEE Trans-
actions on Software Engineering pp. 1–23 (2022)

20. Koret, J.: Diaphora. https://github.com/joxeankoret/diaphora (2015)

https://tigress.wtf/index.html
https://doi.org/10.1109/CSR57506.2023.10224825
https://doi.org/10.1109/CSR57506.2023.10224825
https://github.com/61bcdefg/Hikari-LLVM15
https://github.com/joxeankoret/diaphora

Experimental Study of Binary Diffing Resilience on Obfuscated Programs 19

21. Kostakis, O., Kinable, J., Mahmoudi, H., Mustonen, K.: Improved call graph com-
parison using simulated annealing. In: Proceedings of the 2011 ACM Symposium
on Applied Computing. pp. 1516–1523 (2011)

22. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research
logistics quarterly 2(1-2), 83–97 (1955)

23. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for
learning the similarity of graph structured objects. In: International conference on
machine learning. pp. 3835–3845. PMLR (2019)

24. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism detec-
tion. In: Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering. pp. 389–400 (2014)

25. Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y., Mansouri, M.,
Balzarotti, D.: How machine learning is solving the binary function similarity prob-
lem. In: 31st USENIX Security Symposium (USENIX Security 22) (2022)

26. Massarelli, L., Di Luna, G.A., Petroni, F., Querzoni, L., Baldoni, R., et al.: Inves-
tigating graph embedding neural networks with unsupervised features extraction
for binary analysis. In: 2nd Workshop on Binary Analysis Research (BAR) (2019)

27. Massarelli, L., Di Luna, G.A., Petroni, F., Querzoni, L., Baldoni, R.: Safe: Self-
attentive function embeddings for binary similarity. In: Proceedings of 16th Con-
ference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA) (2019)

28. Meng, X., Miller, B.P.: Binary code is not easy. In: Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis. pp. 24–35 (2016)

29. Mengin, E., Rossi, F.: Binary diffing as a network alignment problem via belief
propagation. In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). pp. 967–978. IEEE (2021)

30. Mengin, E., Rossi, F.: Improved algorithm for the network alignment problem with
application to binary diffing. Procedia Computer Science 192, 961–970 (2021)

31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

32. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: Trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: 26th USENIX Security
Symposium (USENIX Security 17). pp. 253–270 (2017)

33. Ming, J., Xu, D., Wu, D.: Memoized semantics-based binary diffing with appli-
cation to malware lineage inference. In: Federrath, H., Gollmann, D. (eds.) ICT
Systems Security and Privacy Protection. Cham (2015)

34. Nagra, J., Collberg, C.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tam-
perproofing for Software Protection. Pearson Education (2009)

35. Pei, K., Xuan, Z., Yang, J., Jana, S., Ray, B.: Trex: Learning execution semantics
from micro-traces for binary similarity. arXiv preprint arXiv:2012.08680 (2020)

36. Shirani, P., Wang, L., Debbabi, M.: Binshape: Scalable and robust binary library
function identification using function shape. In: International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment. pp. 301–324.
Springer (2017)

37. Thomas, R.: O-mvll. https://github.com/open-obfuscator/o-mvll (2022)
38. Tofighi-Shirazi, R., Asavoae, I.M., Elbaz-Vincent, P., Le, T.H.: Defeating opaque

predicates statically through machine learning and binary analysis. In: Proceedings
of the 3rd ACM Workshop on Software Protection. pp. 3–14 (2019)

https://github.com/open-obfuscator/o-mvll

20 R. Cohen et al.

39. Ullah, S., Oh, H.: Bindiff nn: Learning distributed representation of assembly for
robust binary diffing against semantic differences. IEEE Transactions on Software
Engineering 48(9), 3442–3466 (2021)

40. Wang, C.: A security architecture for survivability mechanisms. University of Vir-
ginia (2001)

41. Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, H., Zhuge, J., Zhang, C.:
Jtrans: Jump-aware transformer for binary code similarity detection. In: Proceed-
ings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis. p. 1–13. ISSTA 2022, New York, NY, USA (2022)

42. Zhang, P., Wu, C., Peng, M., Zeng, K., Yu, D., Lai, Y., Kang, Y., Wang, W.,
Wang, Z.: Khaos: The impact of inter-procedural code obfuscation on binary diffing
techniques. In: Proceedings of the 21st ACM/IEEE International Symposium on
Code Generation and Optimization. p. 55–67. CGO ’23, Association for Computing
Machinery, New York, NY, USA (2023)

43. Zhao, L., Zhu, Y., Ming, J., Zhang, Y., Zhang, H., Yin, H.: Patchscope: Memory
object centric patch diffing. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. pp. 149–165 (2020)

44. Zhou, Y., Main, A., Gu, Y.X., Johnson, H.: Information hiding in software with
mixed boolean-arithmetic transforms. In: International Workshop on Information
Security Applications. pp. 61–75. Springer (2007)

Passes Pass type Description Unify name

Tigress

Copy Inter Clone a function Copy
Split Inter Split a function into chunks Split
Merge Inter Merge multiple function into one Merge
CFF Intra The function basic blocks are put at the same level CFF
Virtualize Intra Transforms a function into an interpreter Virtualize
Opaque Intra Insert OpaquePredicates Opaque
EncodeArithmetic Data Replace arithmetic with complex expressions Enc.A
EncodeLiterals Data Hide literals with less obvious expressions Enc.L
Mix Intra & Data Combination of CFF, EncodeArithmetic and Opaque Mix
Mix + Split All Mix + Split Mix + Split

OLLVM-14

CFF Intra The function basic blocks are put at the same level CFF
BogusCF Intra Insert basic blocks and OpaquePredicates Opaque
InsSub Data Substitute operators by more complicated instructions Enc.A
Mix Intra & Data Combination of CFF, InsSub and BogusCF Mix

Table 7: Obfuscation description

B
B
lo
ck
N
b

S
C
C
o
m
p
o
n
en

ts
B
y
te
sH

a
sh

C
y
cl
o
m
a
ti
c
C
o
m
p
le
x
it
y

M
D
In
d
ex

J
u
m
p
N
b

S
m
a
ll
P
ri
m
eN

u
m
b
er
s

M
a
x
P
a
re
n
tN

b
M
a
x
C
h
il
d
N
b

M
a
x
In
sN

b
M
ea
n
In
sN

b
In
sN

b
G
ra
p
h
M
ea
n
D
eg
re
e

G
ra
p
h
D
en

si
ty

G
ra
p
h
N
b
C
o
m
p
o
n
en

ts
G
ra
p
h
D
ia
m
et
er

G
ra
p
h
T
ra
n
si
ti
v
it
y

G
ra
p
h
C
o
m
m
u
n
it
ie
s

A
d
d
re
ss

D
a
tN

a
m
e

F
u
n
cN

a
m
e

C
h
il
d
N
b

P
a
re
n
tN

b
R
el
a
ti
v
eN

b
L
ib
N
a
m
e

Im
p
N
a
m
e

C
o
n
st
a
n
t

S
tr
R
ef
s

M
n
em

o
n
ic
S
im

p
le

M
n
em

o
n
ic
T
y
p
ed

G
ro
u
p
sC

a
te
g
o
ry

R
ea
d
W
ri
te
A
cc
es
s

Merge

Split
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Copy ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Intra ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Data ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗

Table 8: QBinDiff stable (✔) and unstable (✗) features list depending on the
applied obfuscation.

	Experimental Study of Binary Diffing Resilience on Obfuscated Programs

