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Background: Compilation
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Source Code
(C, Java, Rust)

Machine Code
(x86, ARM, Aarch64)

Compilation
(gcc, clang)



Background: Reverse Engineering
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Machine Code
(x86, ARM, Aarch64)

Reverse
Engineering

➤ What is the function doing?

➤ Is it legit or suspicious? (backdoor, malware)

Reverse Engineering Goal



Instruction
cmp    eax, 0

Background: Reverse Engineering
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Machine Code
(x86, ARM, Aarch64)

mnemonic operands

Control Flow Graph (CFG)

➤ Encode loop, and branching 
condition logic, e.g if / else.
 

➤ One for each function



Background: Semantic Equivalence
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-O0 Compilation
(no optimization)

-O2 Compilation
(optimization)

Obfuscation
(virtualization)

Function



Obfuscation
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All the techniques used to alter the syntactic properties of a 
program without modifying its semantics (preserving soundness)

Definition

Why ?

○ Intellectual property protection (video 
games, applications…)

○ Malicious (Malware, APT attacks…)
○ Diversification

Reversing Point of View

Goal: Understand what is the 
obfuscation hiding. (First step 
toward deobfuscation)

⇒



Obfuscation Types
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x+y

e.g: Split

(x^y)+
2(x&y)

Inter-procedural
(between functions)

Intra-procedural
(inside a function)

Data
(constants strings, etc.)

e.g: Control Flow Flattening
e.g: Mixed-Boolean Arithmetic



Step by step obfuscation analysis
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Identification Characterization
Attack

(Deobfuscation)
“plain text” 

program

Determining if a binary / 
function has been 
obfuscated
⇒ Binary classification

Determining how it was 
obfuscated
⇒ Multi-class classification

Attack the obfuscation 
depending on its type 
(academic papers usually start 
here)



How can we recognize an obfuscated function ?

99

Which function is obfuscated ? How it is obfuscated ?



10

Machine Learning for obfuscation detection
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➤ Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of 

function obfuscation detection

➤ Binary classification vs multi-class classification (11 classes !) 

Goal : general study about ML for obfuscation analysis

➤ Little study about classical ML for obfuscation detection [1, 2, 3]

➤ Little or no study on deep-learning potential for obfuscation detection [4]

➤ No satisfactory obfuscated dataset available (too small, not enough obfuscations…)

Current state-of-the-art

[1] Greco and al.Explaining binary obfuscation 2023
[2] Schrittwieser and al. Modeling obfuscation stealth through code complexity. 2023  
[3] Salem and al. Metadata recovery from obfuscated programs using machine learning. 2016
[4] Jiang and al. Function-level obfuscation detection method based on graph convolutional networks. 2021



Dataset
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Dataset

➤ projects: zlib, lz4, minilua, sqlite, freetype 
➤ obfuscator: OLLVM, Tigress 
➤ obfuscations: 

○ intra (CFF, Opaque, Virtualization)

○ inter (Split, Merge, Copy)

○ data (EncodeArithmetic, EncodeLiterals)

○ mix1 (intra & data)

○ mix2 (intra & inter & data) 
➤ High class unbalance

Dataset-1
➤  Split per function 
➤ Randomly assign functions (and their 

obfuscations variants) to a set 
(training, validation, testing)

➤ “Easy” setup as two functions 
belonging to the same program may 
be close

Dataset-2
➤  Split per binary
➤ Assign all the functions of 

zlib/lz4/minilua (and their obfuscations 
variants) to the training set, 
sqlite/freetype to the validation/test set

➤ “Harder” setup: it must generalize to 
completely unseen binaries



Elementary ML
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➤ 1 function = 1 CFG = 1 graph

➤ Elementary ML : 1 graph = 1 feature vector (1, d)

Reminder

Features ML models

CFG 
(functions)

classification 
results

Graph-based features
Extract various graph features 
(#nodes, #edges, cyclomatic 

complexity, density)

Assembly mnemonic 
TF-IDF

Use the TF-IDF feature of the 
128-most frequent mnemonics 
inside the function assembly

 

Random Forest

Gradient 

Boosting
classification 

results



Graph Neural Networks
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➤ Neural networks adapted to non-euclidean data

➤ Invariant to permutation

➤ Iteratively update initial node feature given the node neighborhood

Definition

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)



Graph Neural Networks
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➤ 1 function = 1 CFG = 1 graph

➤ GNN : 1 graph = 1 feature vector per node !

Reminder

➤ Identity feature (vector filled with 1’s)

➤ Coarse assembly feature : counting the number of assembly classes 

(floating-point mnemonics, data-transfer mnemonics…)

➤ “Semantic” assembly feature : counting the assembly mnemonics 

(mov, lea, …)

➤ “Semantic” Pcode feature : counting the Pcode mnemonics (BRANCH, 

STORE,...)

Features
Pcode is an intermediary 
representation that translates 
an assembly instruction into 
an architecture-agnostic 
language

Advantage
Only 72 Pcode mnemonics ! 

(More than 1800 for x86 
assembly)

⇓



Evaluation
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 Recall(c0) + … + Recall(cn)
  n

True Positives False Positives True Negatives False Negatives

         Recall  = 
+ ⇒ balanced 

accuracy =



Binary classification
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Binary classification
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Stable baselines, with 
better scores using GB 
and mnemonic TF-IDF.

Dataset-1 have higher 
scores than Dataset-2.



Binary classification
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GNN with coarse features 
give disappointing results.

Meaningful features 
(“semantic”) outperform
baselines.



Binary classification
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Pcode feature outperforms 
assembly feature while 
being less costly (#78 
instead of #1839) and 
CPU-agnostic.



Binary classification
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Better generalization 
capabilities of GNN 

compared to baselines



Multi-class classification (11 classes)
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Multi-class classification (11 classes)
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Same trend than in the 
binary case !

Results are very 
promising given the high 
number of classes



Real-World example : XTunnel
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➤ Malware designed by APT-28

➤ Used to exfiltrate data from a compromised device

➤ Obfuscated with Opaque Predicates [1]

➤ Handmade ground-truth (costly)

XTunnel

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions 
on obfuscated codes. 2017



Conclusion
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Obfuscation detection and classification

➤ Promising results, with satisfactory baselines

➤ GNN need meaningful features conveying part of the function “semantics”

➤ GNN with a strong generalization power

➤ Great results, both for the binary and multi-class classification

➤ In-the-wild example with malware obfuscation detection
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Graph Neural Networks
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GCN

SAGE

GIN

GAT

Comparison of GNN convolution.
GIN offers the best theoretical guarantees (as powerful as the 1-WL test)


