

NETWORKS

Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code

December 10-12, 2024, Istanbul, Turkey

<rcohen@quarkslab.com>, Quarkslab & LAMSADE, CNRS</rcohen@quarkslab.com>
<rdavid@quarkslab.com>, Quarkslab</rdavid@quarkslab.com>
<florian.yger@insa-rouen.fr>, LITIS - INSA Rouen</florian.yger@insa-rouen.fr>
<fabrice.rossi@dauphine.psl.eu>, CEREMADE - PSL Dauphine-University</fabrice.rossi@dauphine.psl.eu>

Background: Compilation

inflateReset endp

Background: Reverse Engineering

; } // starts at CC80 inflateReset endp

Background: Reverse Engineering

Background: Semantic Equivalence

-O0 Compilation (no optimization)

(virtualization)

Obfuscation

Definition

All the techniques used to alter the syntactic properties of a program without modifying its semantics (*preserving soundness*)

Why?

- Intellectual property protection (video games, applications...)
- Malicious (Malware, APT attacks...)
- Diversification

Reversing Point of View

Goal: Understand what is the obfuscation hiding. (*First step toward deobfuscation*)

Obfuscation Types

7

Step by step obfuscation analysis

How can we recognize an obfuscated function?

Which function is obfuscated ? How it is obfuscated ?

Current state-of-the-art

- Little study about classical ML for obfuscation detection [1, 2, 3]
- > Little or no study on deep-learning potential for obfuscation detection [4]
- > No satisfactory obfuscated dataset available (too small, not enough obfuscations...)

Goal : general study about ML for obfuscation analysis

> Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of

function obfuscation detection

Binary classification vs multi-class classification (11 classes !)

[1] Greco and al. Explaining binary obfuscation 2023

[2] Schrittwieser and al. Modeling obfuscation stealth through code complexity. 2023

[3] Salem and al. Metadata recovery from obfuscated programs using machine learning. 2016

[4] Jiang and al. Function-level obfuscation detection method based on graph convolutional networks. 2021

Dataset

Dataset

- projects: zlib, lz4, minilua, sqlite, freetype
- obfuscator: OLLVM, Tigress

obfuscations:

- intra (CFF, Opaque, Virtualization)
- o inter (Split, Merge, Copy)
- data (EncodeArithmetic, EncodeLiterals)
- o mix1 (intra & data)
- o mix2 (intra & inter & data)
- High class unbalance

Dataset-1

- Split per function
- Randomly assign functions (and their obfuscations variants) to a set (training, validation, testing)
- "Easy" setup as two functions belonging to the same program may be close

Dataset-2

- Split per binary
- Assign all the functions of zlib/lz4/minilua (and their obfuscations variants) to the training set,
 - sqlite/freetype to the validation/test set
- "Harder" setup: it must generalize to completely unseen binaries

Elementary ML

Reminder

- I function = 1 CFG = 1 graph
- Elementary ML : 1 graph = 1 feature vector (1, d)

Graph Neural Networks

Definition

- Neural networks adapted to non-euclidean data
- > Invariant to permutation
- > Iteratively update initial node feature given the node neighborhood

$$a_v^{(k)} = AGGREGATE^{(k)} \left(\left\{ h_u^{(k-1)} : u \in \mathcal{N}(v) \right\} \right)$$
$$h_v^{(k)} = COMBINE^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right)$$

$$h_G = READOUT(\{h_v^{(K)} | v \in G\})$$

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)

Graph Neural Networks

Reminder

- 1 function = 1 CFG = 1 graph
- GNN : 1 graph = 1 feature vector per node !

Features

- Identity feature (vector filled with 1's)
- Coarse assembly feature : counting the number of assembly classes (floating-point mnemonics, data-transfer mnemonics...)
- "Semantic" assembly feature : counting the assembly mnemonics (mov, lea, ...)
- "Semantic" Pcode feature : counting the Pcode mnemonics (BRANCH, STORE,...)

Pcode is an intermediary representation that translates an assembly instruction into an architecture-agnostic language

 \downarrow

Advantage Only 72 Pcode mnemonics ! (More than 1800 for x86 assembly)

Evaluation

Croph	raph Fostures Algorithm		Balanced	accuracy
Graph	reatures	Algorithm	Dataset-1	Dataset-2
	Graph features &	RandomForest	0.702	0.60
	assembly (Dim: $#23$)	GradientBoosting	0.725	0.649
	TF-IDF on assembly	RandomForest	0.76	0.607
	mnemonics (Dim: $\#128$)	GradientBoosting	0.80	0.683
		GCN	0.634	0.608
		Sage	0.615	0.574
	Identity (Dim: $\#1$)	GIN	0.603	0.531
		GAT	0.589	0.539
		UNet	0.616	0.555
		GCN	0.659	0.658
	Counting mnemonic classes (Dim: #27)	Sage	0.694	0.66
		GIN	0.701	0.673
		GAT	0.655	0.667
CEC		UNet	0.66	0.654
OrG		GCN	0.789	0.736
	Semantic & counting	Sage	0.801	0.755
	PCode mnemonics	GIN	0.80	0.766
	(Dim: #78)	GAT	0.805	0.731
		UNet	0.779	0.672
		GCN	0.792	0.758
	Semantic & counting	Sage	0.802	0.727
	assembly mnemonics	GIN	0.793	0.727
	(Dim: #1839)	GAT	0.797	0.729
		UNet	0.785	0.701

	Graph	Fastures	Algonithm	Balanced	accuracy
		Features	Algorithm	Dataset-1	Dataset-2
		Graph features &	RandomForest	0.702	0.60
		assembly (Dim: $#23$)	GradientBoosting	0.725	0.649
		TF-IDF on assembly	RandomForest	0.76	0.607
		mnemonics (Dim: $\#128$)	GradientBoosting	0.80	0.683
			GCN	0.634	0.608
			Sage	0.615	0.574
Stable baselines, with		Identity (Dim: $\#1$)	GIN	0.603	0.531
bottor scores using CP			GAT	0.589	0.539
beller scores using GB			UNet	0.616	0.555
and mnemonic TF-IDF.			GCN	0.659	0.658
			Sage	0.694	0.66
		Counting mnemonic	GIN	0.701	0.673
Dataset-1 have higher		classes (Dim: $#27$)	GAT	0.655	0.667
scores than Dataset 2	CFG		UNet	0.66	0.654
scores than Dataset-2.	or a		GCN	0.789	0.736
		Semantic & counting	Sage	0.801	0.755
		PCode mnemonics	GIN	0.80	0.766
		(Dim: #78)	GAT	0.805	0.731
			UNet	0.779	0.672
			GCN	0.792	0.758
		Semantic & counting	Sage	0.802	0.727
		assembly mnemonics	GIN	0.793	0.727
		(Dim: #1839)	GAT	0.797	0.729
			UNet	0.785	0.701

	Graph	Graph Features		Algorithm Balance		accuracy
	Graph	reatures	Aigoritinn	Dataset-1	Dataset-2	
		Graph features &	RandomForest	0.702	0.60	
		assembly (Dim: $#23$)	GradientBoosting	0.725	0.649	
		TF-IDF on assembly	RandomForest	0.76	0.607	
		mnemonics (Dim: #128)	GradientBoosting	0.80	0.683	
			GCN	0.634	0.608	
			Sage	0.615	0.574	
		Identity (Dim: $\#1$)	GIN	0.603	0.531	
GNN with coarse features			GAT	0.589	0.539	
			UNet	0.616	0.555	
give disappointing results.			GCN	0.659	0.658	
			Sage	0.694	0.66	
		Counting mnemonic	GIN	0.701	0.673	
Meaningful features		classes (Dim: $#27$)	GAT	0.655	0.667	
("semantic") outperform	CFG		UNet	0.66	0.654	
			GCN	0.789	0.736	
baselines.		Semantic & counting	Sage	0.801	0.755	
		PCode mnemonics	GIN	0.80	0.766	
		(Dim: #78)	GAT	0.805	0.731	
			UNet	0.779	0.672	
		G	GCN	0.792	0.758	
		Semantic & counting	Sage	0.802	0.727	
		assembly mnemonics	GIN	0.793	0.727	
		(Dim: #1839)	GAT	0.797	0.729	

UNet

0.785

0.701

	Croph	Footures	Algorithm	Balanced	accuracy
	Graph	reatures	Algorithm	Dataset-1	Dataset-2
		Graph features &	RandomForest	0.702	0.60
		assembly (Dim: $#23$)	GradientBoosting	0.725	0.649
		TF-IDF on assembly	RandomForest	0.76	0.607
		mnemonics (Dim: #128)	GradientBoosting	0.80	0.683
			GCN	0.634	0.608
			Sage	0.615	0.574
		Identity (Dim: $\#1$)	GIN	0.603	0.531
			GAT	0.589	0.539
Pcode feature outperforms			UNet	0.616	0.555
r code leature outperforms			GCN	0.659	0.658
assembly feature while			Sage	0.694	0.66
being less costly (#78		Counting mnemonic	GIN	0.701	0.673
		classes (Dim: #27)	GAT	0.655	0.667
instead of #1839) and	CFG		UNet	0.66	0.654
CPIL-agnostic			GCN	0.789	0.736
Cr O-agnostic.		Semantic & counting	Sage	0.801	0.755
		PCode mnemonics	GIN	0.80	0.766
		(Dim: #78)	GAT	0.805	0.731
			UNet	0.779	0.672
			GCN	0.792	0.758
		Semantic & counting	Sage	0.802	0.727
		assembly mnemonics	GIN	0.793	0.727
		(Dim: #1839)	GAT	0.797	0.729
			UNet	0.785	0.701

	Croph	Footures	Algorithm	Balanced	accuracy
	Graph	reatures	Algorithm	Dataset-1	Dataset-2
		Graph features &	RandomForest	0.702	0.60
		assembly (Dim: $#23$)	GradientBoosting	0.725	0.649
		TF-IDF on assembly	RandomForest	0.76	0.607
		mnemonics (Dim: $\#128$)	GradientBoosting	0.80	0.683
			GCN	0.634	0.608
			Sage	0.615	0.574
		Identity (Dim: $\#1$)	GIN	0.603	0.531
			GAT	0.589	0.539
			UNet	0.616	0.555
		Counting mnemonic	GCN	0.659	0.658
Better generalization			Sage	0.694	0.66
capabilities of GNN			GIN	0.701	0.673
	to baselines CFG Semantic & counting	classes (Dim: $#27$)	GAT	0.655	0.667
compared to baselines			UNet	0.66	0.654
			GCN	0.789	0.736
		Semantic & counting	Sage	0.801	0.755
		PCode mnemonics	GIN	0.80	0.766
		(Dim: #78)	GAT	0.805	0.731
			UNet	0.779	0.672
			GCN	0.792	0.758
		Semantic & counting	Sage	0.802	0.727
		assembly mnemonics	GIN	0.793	0.727
		(Dim: #1839)	GAT	0.797	0.729
			UNet	0.785	0.701

Multi-class classification (11 classes)

Croph	Footumor	Balanced accuracy			
Graph	reatures	Algorithm	Dataset-1	Dataset-2	
	Graph features &	RandomForest	0.65	0.57	
	assembly (Dim: $#23$)	GradientBoosting	0.66	0.594	
	TF-IDF on assembly	RandomForest	0.697	0.593	
	mnemonics (Dim: $\#128$)	GradientBoosting	0.724	0.579	
		GCN	0.323	0.326	
		Sage	0.341	0.347	
	Identity (Dim: $\#1$)	GIN	0.414	0.407	
Counting mnemonic classes (Dim: #27)	GAT	0.192	0.195		
		UNet	0.362	0.299	
		GCN	0.431	0.462	
		Sage	0.498	0.499	
	Counting mnemonic classes (Dim: #27)	GIN	0.488	0.474	
		GAT	0.45	0.342	
		UNet	0.439	0.448	
OrG		GCN	0.721	0.675	
	Semantic & counting	Sage	0.737	0.549	
	PCode mnemonics	GIN	0.732	0.657	
	(Dim: #78)	GAT	0.729	0.637	
		UNet	0.704	0.655	
		GCN	0.723	0.633	
	Semantic & counting	Sage	0.718	0.535	
	assembly mnemonics	GIN	0.713	0.427	
	(Dim: #1839)	GAT	0.723	0.646	
		UNet	0.709	0.611	

Multi-class classification (11 classes)

Croph	Footures	Algorithm	Balanced accuracy		
Graph	april reatures	Algorithm	Dataset-1	Dataset-2	
	Graph features &	RandomForest	0.65	0.57	
	assembly (Dim: $#23$)	GradientBoosting	0.66	0.594	
	TF-IDF on assembly	RandomForest	0.697	0.593	
	mnemonics (Dim: #128)	GradientBoosting	0.724	0.579	
		GCN	0.323	0.326	
		Sage	0.341	0.347	
	Identity (Dim: $\#1$)	GIN	0.414	0.407	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GAT	0.192	0.195	
CFG		UNet	0.362	0.299	
		GCN	0.431	0.462	
		Sage	0.498	0.499	
	Counting mnemonic classes (Dim: #27)	GIN	0.488	0.474	
		GAT	0.45	0.342	
		UNet	0.439	0.448	
		GCN	0.721	0.675	
	Semantic & counting	Sage	0.737	0.549	
	PCode mnemonics	GIN	0.732	0.657	
	(Dim: #78)	GAT	0.729	0.637	
	Caraon De	UNet	0.704	0.655	
		GCN	0.723	0.633	
	Semantic & counting	Sage	0.718	0.535	
	assembly mnemonics	GIN	0.713	0.427	
	(Dim: #1839)	GAT	0.723	0.646	
		UNet	0.709	0.611	

Results are **very promising** given the **high number of classes**

Real-World example : XTunnel

XTunnel

- Malware designed by APT-28
- Used to exfiltrate data from a compromised device
- Obfuscated with Opaque Predicates [1]
- Handmade ground-truth (costly)

	Binary balanced accuracy	Multi-class balanced accuracy
Sample $C637E$	0.726	0.533
Sample $99B45$	0.711	0.55

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions on obfuscated codes. 2017

Conclusion

Obfuscation detection and classification

- > Promising results, with **satisfactory baselines**
- > GNN need **meaningful features** conveying part of the function "**semantics**"
- > GNN with a strong **generalization** power
- Great results, both for the binary and multi-class classification
- > In-the-wild example with malware obfuscation detection

Thank you

Contact information:

Quarkslab

Graph Neural Networks

Q

GCN	$\mathbf{x}_i' = \mathbf{\Theta}^ op \sum_{j \in \mathcal{N}(i) \cup \{i\}} rac{e_{j,i}}{\sqrt{\hat{d}_j \hat{d}_i}} \mathbf{x}_j$	$\hat{d}_i = 1 + \sum_{j \in \mathcal{N}(i)} e_{j,i}$
SAGE	$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \mathrm{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$	
GIN	$\mathbf{x}_i' = h_{\mathbf{\Theta}} \left((1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j ight)$	
GAT	$\mathbf{x}_i' = \sum_{j \in \mathcal{N}(i) \cup \{i\}} lpha_{i,j} \mathbf{\Theta}_t \mathbf{x}_j,$	$lpha_{i,j} = rac{\exp\left(ext{LeakyReLU}\left(\mathbf{a}_s^{ op} oldsymbol{\Theta}_s \mathbf{x}_i + \mathbf{a}_t^{ op} oldsymbol{\Theta}_t \mathbf{x}_j ight) ight)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(ext{LeakyReLU}\left(\mathbf{a}_s^{ op} oldsymbol{\Theta}_s \mathbf{x}_i + \mathbf{a}_t^{ op} oldsymbol{\Theta}_t \mathbf{x}_k ight) ight)}$
	Comparis GIN offers the best theoretica	on of GNN convolution. al guarantees (as powerful as the 1-WL test)