
Roxane Cohen <rcohen@quarkslab.com>, Quarkslab & LAMSADE, CNRS
Robin David <rdavid@quarkslab.com>, Quarkslab
Florian Yger <florian.yger@insa-rouen.fr>, LITIS - INSA Rouen
Fabrice Rossi <fabrice.rossi@dauphine.psl.eu>, CEREMADE - PSL Dauphine-University

Identifying Obfuscated Code through
Graph-Based Semantic Analysis of
Binary Code

December 10-12, 2024, Istanbul, Turkey

mailto:rdavid@quarkslab.com

Background: Compilation

22

Source Code
(C, Java, Rust)

Machine Code
(x86, ARM, Aarch64)

Compilation
(gcc, clang)

Background: Reverse Engineering

33

Machine Code
(x86, ARM, Aarch64)

Reverse
Engineering

➤ What is the function doing?

➤ Is it legit or suspicious? (backdoor, malware)

Reverse Engineering Goal

Instruction
cmp eax, 0

Background: Reverse Engineering

44

Machine Code
(x86, ARM, Aarch64)

mnemonic operands

Control Flow Graph (CFG)

➤ Encode loop, and branching
condition logic, e.g if / else.

➤ One for each function

Background: Semantic Equivalence

55

-O0 Compilation
(no optimization)

-O2 Compilation
(optimization)

Obfuscation
(virtualization)

Function

Obfuscation

66

All the techniques used to alter the syntactic properties of a
program without modifying its semantics (preserving soundness)

Definition

Why ?

○ Intellectual property protection (video
games, applications…)

○ Malicious (Malware, APT attacks…)
○ Diversification

Reversing Point of View

Goal: Understand what is the
obfuscation hiding. (First step
toward deobfuscation)

⇒

Obfuscation Types

77

x+y

e.g: Split

(x^y)+
2(x&y)

Inter-procedural
(between functions)

Intra-procedural
(inside a function)

Data
(constants strings, etc.)

e.g: Control Flow Flattening
e.g: Mixed-Boolean Arithmetic

Step by step obfuscation analysis

88

Identification Characterization
Attack

(Deobfuscation)
“plain text”

program

Determining if a binary /
function has been
obfuscated
⇒ Binary classification

Determining how it was
obfuscated
⇒ Multi-class classification

Attack the obfuscation
depending on its type
(academic papers usually start
here)

How can we recognize an obfuscated function ?

99

Which function is obfuscated ? How it is obfuscated ?

10

Machine Learning for obfuscation detection

10

➤ Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of

function obfuscation detection

➤ Binary classification vs multi-class classification (11 classes !)

Goal : general study about ML for obfuscation analysis

➤ Little study about classical ML for obfuscation detection [1, 2, 3]

➤ Little or no study on deep-learning potential for obfuscation detection [4]

➤ No satisfactory obfuscated dataset available (too small, not enough obfuscations…)

Current state-of-the-art

[1] Greco and al.Explaining binary obfuscation 2023
[2] Schrittwieser and al. Modeling obfuscation stealth through code complexity. 2023
[3] Salem and al. Metadata recovery from obfuscated programs using machine learning. 2016
[4] Jiang and al. Function-level obfuscation detection method based on graph convolutional networks. 2021

Dataset

1111

Dataset

➤ projects: zlib, lz4, minilua, sqlite, freetype
➤ obfuscator: OLLVM, Tigress
➤ obfuscations:

○ intra (CFF, Opaque, Virtualization)

○ inter (Split, Merge, Copy)

○ data (EncodeArithmetic, EncodeLiterals)

○ mix1 (intra & data)

○ mix2 (intra & inter & data)
➤ High class unbalance

Dataset-1
➤ Split per function
➤ Randomly assign functions (and their

obfuscations variants) to a set
(training, validation, testing)

➤ “Easy” setup as two functions
belonging to the same program may
be close

Dataset-2
➤ Split per binary
➤ Assign all the functions of

zlib/lz4/minilua (and their obfuscations
variants) to the training set,
sqlite/freetype to the validation/test set

➤ “Harder” setup: it must generalize to
completely unseen binaries

Elementary ML

1212

➤ 1 function = 1 CFG = 1 graph

➤ Elementary ML : 1 graph = 1 feature vector (1, d)

Reminder

Features ML models

CFG
(functions)

classification
results

Graph-based features
Extract various graph features
(#nodes, #edges, cyclomatic

complexity, density)

Assembly mnemonic
TF-IDF

Use the TF-IDF feature of the
128-most frequent mnemonics
inside the function assembly

Random Forest

Gradient

Boosting
classification

results

Graph Neural Networks

1313

➤ Neural networks adapted to non-euclidean data

➤ Invariant to permutation

➤ Iteratively update initial node feature given the node neighborhood

Definition

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)

Graph Neural Networks

1414

➤ 1 function = 1 CFG = 1 graph

➤ GNN : 1 graph = 1 feature vector per node !

Reminder

➤ Identity feature (vector filled with 1’s)

➤ Coarse assembly feature : counting the number of assembly classes

(floating-point mnemonics, data-transfer mnemonics…)

➤ “Semantic” assembly feature : counting the assembly mnemonics

(mov, lea, …)

➤ “Semantic” Pcode feature : counting the Pcode mnemonics (BRANCH,

STORE,...)

Features
Pcode is an intermediary
representation that translates
an assembly instruction into
an architecture-agnostic
language

Advantage
Only 72 Pcode mnemonics !

(More than 1800 for x86
assembly)

⇓

Evaluation

1515

 Recall(c0) + … + Recall(cn)
 n

True Positives False Positives True Negatives False Negatives

 Recall =
+ ⇒ balanced

accuracy =

Binary classification

1616

Binary classification

1717

Stable baselines, with
better scores using GB
and mnemonic TF-IDF.

Dataset-1 have higher
scores than Dataset-2.

Binary classification

1818

GNN with coarse features
give disappointing results.

Meaningful features
(“semantic”) outperform
baselines.

Binary classification

1919

Pcode feature outperforms
assembly feature while
being less costly (#78
instead of #1839) and
CPU-agnostic.

Binary classification

2020

Better generalization
capabilities of GNN

compared to baselines

Multi-class classification (11 classes)

2121

Multi-class classification (11 classes)

2222

Same trend than in the
binary case !

Results are very
promising given the high
number of classes

Real-World example : XTunnel

2323

➤ Malware designed by APT-28

➤ Used to exfiltrate data from a compromised device

➤ Obfuscated with Opaque Predicates [1]

➤ Handmade ground-truth (costly)

XTunnel

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions
on obfuscated codes. 2017

Conclusion

2424

Obfuscation detection and classification

➤ Promising results, with satisfactory baselines

➤ GNN need meaningful features conveying part of the function “semantics”

➤ GNN with a strong generalization power

➤ Great results, both for the binary and multi-class classification

➤ In-the-wild example with malware obfuscation detection

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

25

mailto:contact@quarkslab.com
https://quarkslab.com/

Graph Neural Networks

2626

GCN

SAGE

GIN

GAT

Comparison of GNN convolution.
GIN offers the best theoretical guarantees (as powerful as the 1-WL test)

