
Identifying Obfuscated Code through
Graph-Based Semantic Analysis of Binary Code

Roxane Cohen1,2, Robin David1, Florian Yger3, and Fabrice Rossi4

1 Quarkslab,
2 LAMSADE, CNRS, Université Paris-Dauphine - PSL, Paris, France

3 LITIS, INSA Rouen Normandy, Rouen, France
4 CEREMADE, CNRS, Université Paris-Dauphine - PSL, Paris, France

Abstract. Protecting sensitive program content is a critical issue in
various situations, ranging from legitimate use cases to unethical contexts.
Obfuscation is one of the most used techniques to ensure such protection.
Consequently, attackers must first detect and characterize obfuscation
before launching any attack against it. This paper investigates the prob-
lem of function-level obfuscation detection using graph-based approaches,
comparing algorithms, from elementary baselines to promising techniques
like GNN (Graph Neural Networks), on different feature choices. We con-
sider various obfuscation types and obfuscators, resulting in two complex
datasets. Our findings demonstrate that GNNs need meaningful features
that capture aspects of function semantics to outperform baselines. Our
approach shows satisfactory results, especially in a challenging 11-class
classification task and in a practical malware analysis example.

Keywords: Graphs, Graph representation learning, GNN, Obfuscation,
Security

1 Introduction

Binary programs and their sensitive contents are often protected from reverse en-
gineering through obfuscation techniques [19], which aim to obscure a program’s
underlying logic without altering its functionality. While reverse engineers seek
to comprehensively understand program semantics [22], developers try to conceal
them, at least partially. Their motivations range from legitimate concerns like
intellectual property protection to less ethical practices such as hiding malicious
payloads [26]. Consequently, detecting obfuscated programs is useful for pro-
gram protection assessment and malware detection complementing, for instance,
traditional signature-based methods. ML (Machine Learning) approaches have
emerged as effective tools for this detection task [10].

In this paper, we focus on obfuscation detection at the function level, with
the aim of identifying both obfuscated functions and the specific obfuscation
techniques employed. Our objective is to pinpoint obfuscated functions within a
binary. While this can help determine if a program is obfuscated overall [10], it has
broader implications. First, as obfuscation negatively impacts program efficiency,

2 Cohen et al.

developers tend to only obfuscate important functions, which ultimately are the
ones of interest for an analyst. Second, automated attacks have been developed
against specific obfuscation schemes, assuming the obfuscation is already detected
and located [4, 32, 2, 24, 27]. By detecting functions obfuscated with these schemes,
analysts can effectively employ the corresponding attacks. Finally, it provides
an evaluation of how stealthy an obfuscation is, which is crucial for developers,
as automated detection tools can provide a measure of the undetectability of
obfuscation methods at a fine-grained level [15].

This problem has been studied from a ML perspective in several previous
works. Many of these studies extract various features from binary programs,
such as the distribution of instructions in the assembly code [23], the function
complexity metrics [25] or semantic reasoning [28]. Some of the more advanced
features are derived from a graph-based representation of the binary functions.
Specifically, each function can be represented by its CFG (Control Flow Graph), a
graph where each node is a BB (Basic Block), an atomic sequence of instructions
without any branching and where a directed edge between two nodes corresponds
to a candidate execution path. The cyclomatic complexity is one example of a
feature computed from the CFG.

While extracting domain-specific features from the CFG has been proved to
be effective in some cases [10], leveraging the full structural information of the
graph can enhance classification performance in certain applications. This can
be achieved using kernel methods [17] or GNN (Graph Neural Networks). GNNs
are under very active development since their introduction [9] and have shown
promise in outperforming feature-based approaches in specific scenarios [5].

Function-level obfuscation detection and classification were investigated using
a specific type of GNN, a GCN (Graph Convolutional Network) combined
with a LSTM (Long Short-Term Memory) neural network [13]. This approach
outperformed baseline methods based on manually extracted features. However,
these features were limited to the BB level and combined using a simple sum,
lacking structural features that could be derived from the CFG.

In this paper, we compare function-level C code obfuscation detection and
classification methods based on advanced features, including structural features
extracted from the CFGs, processed by classical ML algorithms (Random For-
est and Gradient Boosting), to methods based on GNNs that directly process
attributed CFGs. We extend the previous GNN approach [13] by comparing
different collections of features, including graph-level ones, and exploring various
GNNs architectures. We investigate more advanced obfuscation techniques than
those provided by OLLVM [14] by incorporating Tigress [3] in our experiments.
We use a larger dataset and investigate two data splits to control the classifica-
tion difficulty. Our experiments demonstrate that obfuscation detection is best
achieved through a GNN processing of fine-grained semantic level features.

The remainder of this paper is organized as follows. Section 2 introduces the
obfuscation techniques considered in this study and briefly discusses their impact
on CFG. Section 3 reviews fundamental concepts related to GNNs. Section 4
describes the proposed dataset and Section 5 outlines our experimental setup.

Title Suppressed Due to Excessive Length 3

Section 6 presents the initial task of binary classification, followed by the extended
multi-class experiment in Section 7. Section 8 shows a real-world malware example
dedicated to obfuscation detection. A discussion in Section 9 concludes this study.

2 Binary representation and obfuscation

Binary code is often described by its corresponding disassembly, a symbolic
representation of the machine code. At function level, this disassembly is nat-
urally represented with an attributed CFG that details the function execution
flow between atomic blocks of code, denoted as BB. Such a representation is
particularly useful as semantic information can be extracted from it, describing
the function behavior.

However, binary code is extremely sensitive to compilation parameters, such as
the optimization level. A given function can have multiple CFGs representations
that all convey the same underlying semantics. Conversely, two different functions
may share the same CFG structure but differ on the instructions in their BBs.

A different source of variability is induced by program obfuscation. It aims
at altering a program syntax but not its behavior. It consists in specific trans-
formation passes that try to increase code security against reverse engineering.
Obfuscation is widely used to protect binary assets, such as data, keys or algo-
rithms. Each obfuscation pass has specific effects on binaries [19]. In particular,
a data-related obfuscation consists in modifying the function data-flow. For
example, a MBA (Mixed Boolean Arithmetic) [33] replaces integer values with
a sequence of complex arithmetic computations that is strictly equivalent. A
control-flow obfuscation modifies the true program execution flow, either at
the function level or at the program level. One elementary obfuscation among
this type is the CFF (CFG Flattening), that, inside the function, puts every BB
at the same level and uses a dispatcher to preserve the execution flow logic [30].

Figure 1 and Table 1 illustrate the high variability of binary code, depending
on the compilation effect or obfuscation. Intuitively, detecting a pass that has a
subtle effect on binary code, such as MBA, is tedious. The resulting function may
be confused with a legitimate complex one with dozens of arithmetic operations.

1 int ZEXPORT inflateReset(strm)
2 z_streamp strm;
3 {
4 struct inflate_state FAR *state;
5

6 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
7 state = (struct inflate_state FAR *)strm->state;
8 state->wsize = 0;
9 state->whave = 0;

10 state->wnext = 0;
11 return inflateResetKeep(strm);
12 }
13

Fig. 1: gzerror function source code (zlib project)

4 Cohen et al.

-O0 optimization -O2 optimization Obfuscated with CFF

Table 1: Optimization and obfuscation effects on the gzerror function CFG.

3 Machine learning for graphs

Graph representation learning aims at encoding graph data into a low-dimensional
vector. There exist two main classes of algorithms for this task: feature-based
approaches and GNNs. Feature-based approaches consist in using various expertly
designed features to describe a graph, that are then often processed by traditional
ML algorithms, such as Random Forest, for classification purpose [5]. Standard
features are the number of nodes and edges, the mean node degree, the density,
etc.

GNN (Graph Neural Networks) have experienced recent popularity, despite
having been theorized quite early [9]. GNNs use graph structure and initial
features assigned to the graph nodes to iteratively learn either node or graph
representation, with a message passing mechanism. Formally, the k-th layer of a
message passing GNN is described as follows [31]:

a(k)v = AGG(k)
(
{h(k−1)

u : u ∈ N (v)}
)
, h(k)

v = COMB(k)
(
h(k−1)
v , a(k)v

)
,

where h
(k)
v is the feature associated to the node v at the k-th iteration, h

(0)
v = Xv

is the initial feature of node v and N (v) denotes the neighborhood of node v. Such
node representation can be directly used for node-level tasks. For graph-level
tasks, a graph embedding can be derived using a readout function that will
combine all the node representations into a final graph vector:

hG = RO({h(K)
v |v ∈ G})

The AGG, COMB and the optional RO functions vary depending on the
message passing GNN model that is used. GCN [16] was the first applicable
GNN using convolutional layers. SAGE [11] is a refined GCN version, with a
more advanced COMB method. GIN is a model architecture that offers the best
theoretical foundations as it has been shown to be as powerful as the 1-Weisfeiler-
Lehman test [31]. GAT includes an attention mechanism in the message passing

Title Suppressed Due to Excessive Length 5

framework, that should give more weight to important nodes [29]. UNet is inspired
from the usual UNet architecture for computer vision, where the dimension of
the input data is first downsampled and then expended again [8].

As mentioned before, GNNs take as input a graph with n nodes and a feature
matrix of dimension (n, d) with d, the feature dimension. This node feature
matrix should ideally describe semantically the content or the nature of graph
nodes. Contrarily to feature-based approaches, GNNs use node-level features.
They are known to have a huge impact during the GNN training [5].

Beyond the GNN popularity, one must remember that simple baselines should
always be used as a comparison. Previous works highlight the fact GNNs do not
always provide the best results compared to baselines that are less costly [5, 6].

4 Dataset

In order to study obfuscation, we have built an open-source dataset [21] that
consists of C program sources obfuscated by two different obfuscators and with
different obfuscation types (control-flow and data obfuscations). The dataset is
based on five open source projects: zlib, lz4, minilua, sqlite and freetype,
compiled for x86-64, that are obfuscated with Tigress [3], a source-to-source
obfuscator, and OLLVM [14], that directly interfaces with the compiler. Several
Tigress obfuscations are selected:

– Data obfuscation: EncodeArithmetic, EncodeLiterals;
– Control-flow obfuscation: Virtualize, OpaquePredicates, CFF, Split, Merge,

Copy;
– Combined: a mix of CFF, EncodeArithmetic and OpaquePredicates, and the

same mix with an additional Split.

OLLVM unfortunately offers less obfuscations: only OpaquePredicates, CFF and
a pass similar to EncodeArithmetic.

Data leakage can be a serious issue when building such a dataset. A particular
risk is that an obfuscation could be negated by compiler optimizations. Another
potential issue is functions shared by different projects. To avoid any leakage, we
use two data split strategies to produce a training set, a validation set and a test
set.

In the per function split strategy (Dataset-1), a function and its obfuscated
versions are within the same set. To implement this strategy, all the functions of
the five projects are collected, ensuring the common functions between projects,
such as the libc functions, are completely removed. The resulting function
list is randomly split into three sets: train, validation and test with a ratio of
(64%, 16%, 20%) of the functions, using stratified sampling to ensure a similar
distribution of BB number across sets. For each function in a subset, we include
both the obfuscated and unobfuscated versions. Notice that this leads to an
unbalanced class ratio, as the original dataset contains 11 obfuscation classes for
only one unobfuscated class. This class unbalance ratio is unusual in a context
of anomaly detection, as in general there exist much more normal data than

6 Cohen et al.

Table 2: Characteristics of the two datasets
-O0 optimization -O2 optimization

Dataset-1

Train* : 3,225 / 48,813 Train* : 1,846 / 23,151
Validation* : 803 / 12,135 Validation* : 459 / 5,753

Test* : 1012 / 15,403 Test* : 583 / 7,162
Ratio binary= (0.11, 0.11, 0.11) Ratio binary: (0.17, 0.17, 0.17)

Dataset-2

Train* : 1,137 / 18,759 Train* : 610 / 9,019
Validation* : 279 / 4,652 Validation* : 150 / 2,238

Test* : 3,948 / 57,627 Test* : 3012 / 31,760
Ratio binary : (0.13, 0.13, 0.11) Ratio binary : (0.14, 0.14, 0.17)

* values expressed in functions/samples

abnormal ones. However, obtaining abnormal data is accessible in this context,
even if in practice, obfuscated functions (abnormal data) are often limited inside
a binary for computational reasons.

In the per binary split strategy (Dataset-2), we use all the functions
belonging to zlib, lz4 and minilua, and all their obfuscated versions to create
the train and validation sets. These two sets are split according to the same
procedure used to generate the Dataset-1, with a ratio of (80%, 20%). The test
set is made of all the functions of sqlite and freetype, with all their obfuscated
versions. This setting represents a real-world scenario for detecting obfuscation:
we want to detect and characterize obfuscated functions in a completely new
executable using a model trained on controlled binaries that are potentially
unrelated to the new one.

Dataset-2 should be more challenging than Dataset-1 as two projects may
have a different coding style or may use a vastly different number of functions that
are valid candidates for certain types of obfuscation. Having different projects
during training/validation and testing prevents the model from leveraging per
project regularity.

For these two datasets, -O0 and -O2 binaries are separated. Indeed, compiler
optimizations tend to remove, sometimes completely, the applied obfuscation.
This is particularly true for the OLLVM obfuscator, leading to many obfuscated
variants that are identical to non-obfuscated versions. The dataset descriptions,
especially the number of functions and samples, and the class ratio are available
in Table 2.

5 Methods and feature vectors

Quantifying precisely to what extent each aspect of the obfuscation detection
problem contributes to the final classification score is essential. In fact, various
features are potential candidates to be used for further classification: textual data
from assembly text, statistical data, etc. In this work, graph representation and
features are gradually enriched, starting from existing ML works, before diving
into more advanced GNN algorithms.

Title Suppressed Due to Excessive Length 7

All our experiments were conducted on a Linux-based server equipped of
Nvidia RTX A6000, with 20 cores, 40 threads and 32GiB of RAM.

This study analyzes various graph-related algorithms. Indeed, CFG are an
intuitive graph representation for a binary function, where nodes represent BBs
and edges denote the execution flow between these nodes inside the function.
This graph is attributed and each node contains its associated assembly code, a
sequence of instructions. Each instruction, e.g. mov eax, 0 in x86-64, combines
a mnemonic (the action to operate, here mov) and operands (the arguments of
this action, here eax, 0) As mentioned before, two main algorithm classes are
used for graph classification.

We use as baseline models traditional ML models, namely random forests
and gradient boosting. They operate on graph-level features extracted from
the functions. More precisely, we consider two types of features. We extract
first CFG-related features such as the number of nodes, edges, the cyclomatic
complexity, etc. They are complemented by assembly TF-IDF features. We
use the approach proposed by Salem and al. [23], that is the counts of the 128
most used assembly mnemonics inversely weighted by the global frequencies.

We compare these baselines to five message passing GNN models: GCN,
SAGE, GIN, GAT and UNet. As mentioned in Section 3, GNNs need to have
access to both graph structure and node features that are given by the user.
These node-level features are distinct to the ones of previous baselines that
directly handle graph-level features. These node feature vectors are iteratively
refined as follows.

As a reference, we use an identity feature vector, a one-dimensional vector
filled with 1’s. This forces the GNN to rely only on the graph structure.

The first non-trivial feature vector is based on counting assembly mnemonic
classes. We adopt here an existing strategy [13] which provides a coarse repre-
sentation of the assembly mnemonic distribution per BB.

To provide a more robust and refined representation, we use semantic and
counting Pcode mnemonic. Pcode is an IR (Intermediary Representation)
for which each assembly instruction is semantically represented by one or more
Pcode instructions in an architecture agnostic way. Consequently, all the CPU
architectures (ARM, Aarch64, MIPS) share the same underlying Pcode. This fea-
ture vector combines several CFG BB features such as the number of instructions
per node with the Pcode mnemonic counts.

Finally, we consider semantic and counting assembly mnemonic which
is similar to the previous feature vector but uses counts of all possible assembly
instructions (1,828 mnemonic counts for binaries compiled in x86-64). Such a
feature is specific to an architecture, contrary to Pcode.

The above models are evaluated with their corresponding candidate feature
vectors, on both Dataset-1 and Dataset-2. To select the best hyperparameters
on the validation set, GridSearchCV and Optuna [1] are respectively used for
the baselines and the GNNs. The Optuna search is applied with three seeds,
with the best run leading to the chosen hyperparameters, such as the number of
layers or the hidden dimensions. Each Optuna run is restricted to 20 trials in

8 Cohen et al.

Table 3: Binary classification scores, depending on features, algorithms and
datasets.

Graph Features Algorithm
Balanced accuracy
Dataset-1 Dataset-2

CFG

Graph features & RandomForest 0.702 0.60
assembly (Dim: #23) GradientBoosting 0.725 0.649
TF-IDF on assembly RandomForest 0.76 0.607
mnemonics (Dim: #128) GradientBoosting 0.80 0.683

Identity (Dim: #1)

GCN 0.634 0.608
Sage 0.615 0.574
GIN 0.603 0.531
GAT 0.589 0.539
UNet 0.616 0.555

Counting mnemonic

GCN 0.659 0.658
Sage 0.694 0.66
GIN 0.701 0.673

classes (Dim: #27) GAT 0.655 0.667
UNet 0.66 0.654
GCN 0.789 0.736

Semantic & counting Sage 0.801 0.755
PCode mnemonics GIN 0.80 0.766
(Dim: #78) GAT 0.805 0.731

UNet 0.779 0.672
GCN 0.792 0.758

Semantic & counting Sage 0.802 0.727
assembly mnemonics GIN 0.793 0.727
(Dim: #1839) GAT 0.797 0.729

UNet 0.785 0.701

order to limit the computational burden. Baselines and GNNs are respectively
implemented using scikit-learn [20] and Pytorch-Geometric [7].

Because of the unbalanced classes, both in binary and multi-class settings,
our benchmarks are evaluated using the balanced accuracy. This metric heavily
penalizes cases where a class is not properly detected compared to the others.

In this work, results for -O2 are omitted for brevity since they are based on
the same principles as -O0 and show the same trends.

6 Binary classification

In this Section, we address a simplified binary classification problem where the
goal is simply to determine if a function is obfuscated or not. Results for -O0 are
available in Table 3.

We note first that baselines with graph-level features demonstrate satisfactory
results, with a balanced accuracy that is better for the Dataset-1. Such behavior
is expected as the Dataset-2 framework is more challenging. Gradient Boosting
outperforms slightly Random Forest. Besides, the TF-IDF baseline respectively

Title Suppressed Due to Excessive Length 9

Table 4: Multi-class classification scores, depending on features, algorithms and
datasets.

Graph Features Algorithm
Balanced accuracy
Dataset-1 Dataset-2

CFG

Graph features & RandomForest 0.65 0.57
assembly (Dim: #23) GradientBoosting 0.66 0.594
TF-IDF on assembly RandomForest 0.697 0.593
mnemonics (Dim: #128) GradientBoosting 0.724 0.579

Identity (Dim: #1)

GCN 0.323 0.326
Sage 0.341 0.347
GIN 0.414 0.407
GAT 0.192 0.195
UNet 0.362 0.299

Counting mnemonic

GCN 0.431 0.462
Sage 0.498 0.499
GIN 0.488 0.474

classes (Dim: #27) GAT 0.45 0.342
UNet 0.439 0.448
GCN 0.721 0.675

Semantic & counting Sage 0.737 0.549
PCode mnemonics GIN 0.732 0.657
(Dim: #78) GAT 0.729 0.637

UNet 0.704 0.655
GCN 0.723 0.633

Semantic & counting Sage 0.718 0.535
assembly mnemonics GIN 0.713 0.427
(Dim: #1839) GAT 0.723 0.646

UNet 0.709 0.611

reaches 0.80 and 0.68 of balanced accuracy for Dataset-1 and Dataset-2. This
highlights the fact that a fine-grained representation of the assembly mnemonic
distribution characterizes better the abnormality induced by obfuscation than
graph-level features with a coarse-grained assembly representation.

We observe that enriching GNN initial features is fundamental: elementary
features, such as the identity, offer poor performances compared to more accurate
features. This is consistent with the inferior performances of structural graph
features with baseline methods. Moreover, the best performances are obtained
with the richest representation.

Using a feature based on assembly mnemonic counts provides approximately
the same results than relying on the Pcode instructions, even though it is much
larger and restricted to a specific architecture, which is not the case for Pcode,
applicable to any CPU architecture, not only x86-64. This demonstrates the
Pcode potential to extract semantic features. Besides, theoretical results [31]
about GIN expressivity power are confirmed by these experiments as GIN is
generally slightly more efficient than other GNN.

10 Cohen et al.

Table 5: Obfuscation detection results on two XTunnel samples.
Binary balanced accuracy Multi-class balanced accuracy

Sample C637E 0.726 0.533
Sample 99B45 0.711 0.55

7 Multi-class classification

In multi-class classification, the goal is to determine the type of obfuscation
that has been applied to a function. Results for -O0 are available in Table
4. Many observations from the binary case are confirmed in this experiment.
Indeed, elementary baselines perform remarkably well, given the fact there exists
11 classes. As a comparison, previous works consider at most 4 classes [13].
Similarly, GNNs outperform baselines, especially on Dataset-2, when the features
are enriched with semantic information originated from Pcode mnemonic.

8 Real-world example: XTunnel

XTunnel is a malware, developed by APT28 hacking group, that can relay traffic
between a victim and a server used by cybercriminals to control compromised
devices and exfiltrate data. Multiple variants have been found on governmen-
tal and institutional networks, for which some of them were obfuscated. This
obfuscation has been used to evade security products. Malware deobfuscation
helps to highlight and determine malicious functionalities hidden inside these
obfuscated executables [2]. Then, locating and determining the obfuscation type
is necessary before any deobfuscation attempt. These tasks are performed on
two XTunnel obfuscated samples5. Results are compared with a previously built
ground truth, that was computed using a costly approach of symbolic execution
[2]. Such ground truth asserts with a satisfactory confidence that these samples
were heavily obfuscated using OpaquePredicates. The binary and multi-class
classification are handled by the model that, on averaged, gives the best results,
which is GIN with Pcode-based feature. The binary scores are computed over
all the executable functions, whereas the multi-class scores are limited to ob-
fuscated functions only. Results are available in Table 5 and show the validity
of our approach. Interestingly, many functions are considered obfuscated with
EncodeArithmetic instead of OpaquePredicates. Indeed, distinguishing these two
obfuscations is tedious as an OpaquePredicate is simply an EncodeArithmetic
followed by a branching instruction, with one fake branching. Consequently, our
models can still detect a suspicious pattern related to OpaquePredicates and we
consider these predictions as valid.

5 Their corresponding hashes are C637E01F50F5FBD2160B191F6371C5DE2AC56DE4
and 99B454262DC26B081600E844371982A49D334E5E.

Title Suppressed Due to Excessive Length 11

9 Conclusion

To conclude, this work provides a general study about obfuscation detection, at
both binary and multi-class levels. It demonstrates the efficiency of standard
baselines and most importantly the potential of GNNs that, combined with
meaningful features conveying part of function semantics, achieve the best results.
These results are confirmed with a real-world malware example.

If this work seeks to be as complete as possible, it is subject to specific
limitations. First, building a real-word obfuscated dataset implies a lot of im-
plementation constraints. We try our best to represent the large variety of
obfuscators and obfuscations, given accessible resources. Because obfuscation and
optimizations are intertwined, it is difficult to ensure that the obfuscation was
correctly applied and that the compiler optimizations do not remove or attenuate
initial obfuscation, especially in -O2. As a result, our dataset may contain specific
functions that differ from what they should be. Second, GNN hyperparameters
were obtained with a budget constraint. As a consequence, specific GNNs may
have been advantaged compared to others. As an example, GAT takes a long
time to train compared to simpler models such as GCN.

Finally, this works constitutes only a first step of a more general study
on obfuscation detection. More attention should be dedicated to innovating
graph types and features that should capture as much as possible the function
semantics. The binary similarity problem [18] faces the same challenge, leading
to the development of new graphs, such as SOG (Semantic Oriented Graph) [12]
that is, to the best of our knowledge, the first attempt that tries to represent
binary code by combining multiple edge types (data, control-flow, effects) inside
a graph using solely disassembly. This representation seems promising as it brings
together all the key aspects of a function, in particular part of its semantics.

Acknowledgments

The authors thank the Agence Innovation Defense (AID) for its financial support.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 2623–2631
(2019)

2. Bardin, S., David, R., Marion, J.Y.: Backward-bounded dse: Targeting infeasibility
questions on obfuscated codes. In: 2017 IEEE Symposium on Security and Privacy
(SP), pp. 633–651 (2017). DOI 10.1109/SP.2017.36

3. Collberg, C.: The tigress c obfuscator. https://tigress.wtf/index.html. Accessed:
2023-08-17

4. David, R., Coniglio, L., Ceccato, M.: Qsynth-a program synthesis based approach
for binary code deobfuscation. In: BAR 2020 Workshop (2020)

12 Cohen et al.

5. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neu-
ral networks for graph classification. In: International Conference on Learning
Representations (2020). URL https://openreview.net/forum?id=HygDF6NFPB

6. Ferrari Dacrema, M., Cremonesi, P., Jannach, D.: Are we really making much
progress? a worrying analysis of recent neural recommendation approaches. In:
Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19.
ACM (2019). DOI 10.1145/3298689.3347058. URL http://dx.doi.org/10.1145/
3298689.3347058

7. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

8. Gao, H., Ji, S.: Graph u-nets. In: K. Chaudhuri, R. Salakhutdinov (eds.) Proceedings
of the 36th International Conference on Machine Learning, Proceedings of Machine
Learning Research, vol. 97, pp. 2083–2092. PMLR (2019). URL https://proceedings.
mlr.press/v97/gao19a.html

9. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., vol. 2, pp. 729–734 vol. 2 (2005). DOI 10.1109/IJCNN.2005.1555942

10. Greco, C., Ianni, M., Guzzo, A., Fortino, G.: Explaining binary obfuscation. pp.
22–27 (2023). DOI 10.1109/CSR57506.2023.10224825

11. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, p. 1025–1035. Curran Associates Inc., Red Hook,
NY, USA (2017)

12. He, H., Lin, X., Weng, Z., Zhao, R., Gan, S., Chen, L., Ji, Y., Wang, J., Xue,
Z.: Code is not natural language: Unlock the power of semantics-oriented graph
representation for binary code similarity detection. In: 33rd USENIX Security
Symposium (USENIX Security 24), PHILADELPHIA, PA (2024)

13. Jiang, S., Hong, Y., Fu, C., Qian, Y., Han, L.: Function-level obfuscation detection
method based on graph convolutional networks. Journal of Information Security and
Applications 61, 102,953 (2021). DOI https://doi.org/10.1016/j.jisa.2021.102953.
URL https://www.sciencedirect.com/science/article/pii/S2214212621001654

14. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-llvm–software pro-
tection for the masses. In: B. Wyseur (ed.) Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th,
2015, pp. 3–9. IEEE (2015). DOI 10.1109/SPRO.2015.10

15. Kanzaki, Y., Monden, A., Collberg, C.: Code artificiality: A metric for the code
stealth based on an n-gram model. In: 2015 IEEE/ACM 1st International Workshop
on Software Protection, pp. 31–37. IEEE (2015)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2017). URL
https://openreview.net/forum?id=SJU4ayYgl

17. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Applied
Network Science 5(1), 6 (2020). DOI 10.1007/s41109-019-0195-3. URL https:
//doi.org/10.1007/s41109-019-0195-3

18. Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y., Mansouri, M.,
Balzarotti, D.: How machine learning is solving the binary function similarity
problem. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 2099–
2116 (2022)

19. Nagra, J., Collberg, C.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection: Obfuscation, Watermarking, and Tamper-
proofing for Software Protection. Pearson Education (2009)

Title Suppressed Due to Excessive Length 13

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)

21. Quarkslab: Obfuscation dataset. https://github.com/quarkslab/diffing obfuscation
dataset. Accessed: 2024-09-01

22. Raja, V., Fernandes, K.J.: Reverse engineering: an industrial perspective. Springer
Science & Business Media (2007)

23. Salem, A., Banescu, S.: Metadata recovery from obfuscated programs using machine
learning. In: Proceedings of the 6th Workshop on Software Security, Protection,
and Reverse Engineering, pp. 1–11 (2016)

24. Salwan, J., Bardin, S., Potet, M.L.: Symbolic deobfuscation: From virtualized code
back to the original. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 372–392. Springer (2018)

25. Schrittwieser, S., Wimmer, E., Mallinger, K., Kochberger, P., Lawitschka, C.,
Raubitzek, S., Weippl, E.R.: Modeling obfuscation stealth through code complexity.
In: European Symposium on Research in Computer Security, pp. 392–408. Springer
(2023)

26. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: NDSS (2008)

27. Tofighi-Shirazi, R., Asavoae, I.M., Elbaz-Vincent, P., Le, T.H.: Defeating opaque
predicates statically through machine learning and binary analysis. In: Proceedings
of the 3rd ACM Workshop on Software Protection, pp. 3–14 (2019)

28. Tofighi-Shirazi, R., Asăvoae, I.M., Elbaz-Vincent, P.: Fine-grained static detection
of obfuscation transforms using ensemble-learning and semantic reasoning. In:
Proceedings of the 9th Workshop on Software Security, Protection, and Reverse
Engineering, SSPREW9 ’19. Association for Computing Machinery, New York, NY,
USA (2019). DOI 10.1145/3371307.3371313. URL https://doi.org/10.1145/3371307.
3371313

29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018). URL https://openreview.net/forum?id=rJXMpikCZ

30. Wang, C.: A security architecture for survivability mechanisms. University of
Virginia (2001)

31. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2019). URL https:
//openreview.net/forum?id=ryGs6iA5Km

32. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: 2015 IEEE Symposium on Security
and Privacy, pp. 674–691 (2015). DOI 10.1109/SP.2015.47

33. Zhou, Y., Main, A., Gu, Y.X., Johnson, H.: Information hiding in software with
mixed boolean-arithmetic transforms. In: International Workshop on Information
Security Applications, pp. 61–75. Springer (2007)

