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Problem

Situation

Let’s imagine I have a shiny new tool that detect if a patch has been applied to a binary,

how do I test my solution efficiently?

Potential Solutions

� Gather a few couples of binaries from real vulnerabilities

� Create a synthetic project where I add hand-crafted vulnerabilities

� …

� Use the dataset presented today
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Contributions

Commit Level Dataset
A dataset of more than 1,900 vulnerabilities:

� Based on real-world issues (CVEs);

� Precise at a Commit Level.

Precompiled Dataset

Binaries for a 600 of these vulnerabilities:

� 4 architectures (ARM, x86, x86-64, ARM64);
� With debug symbols.

� Available on GitHub at https://github.com/quarkslab/aosp_dataset.
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Existing Work

� Standard Testing Suites (Juliet [1], CGC [2])
Synthetic, Small samples

� Generated Dataset (LAVA [3], MAGMA)
Only one bug type

� CVE Datasets (Akram and Ping [4], Li et al. [5])
Discontinued, Small dataset, Imprecise
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Potential Applications

� Patch Characterization
Draw an identity card of Patch

� Silent Fix Detection
Detect if a commit was a security fix

� Cross Architecture Binary Diffing
Match the same binary across different architectures

� Patch Detection
Detect if a patch has been applied

� …
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Android Open Source Project (AOSP)

What is AOSP?

Android Open
Source Project

~ 2200 projects

90 GB / version

270k files C/C++ 
/ version

~ 1250 tags

only 30 min of compilation / version
(with 56 cores) 

97k files Java / version

6 architectures
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Android’s security

Update process

� Multiple stakeholders (Google, OEM, carriers…)

� Intricated, complex, and usually not followed in time 2 years of security-update

� Project Treble [6] to solve part of the problem starting to get enforced

Android Security Bulletins by Google

� Monthly reports of vulnerability fixes in AOSP

� Contains CVE-ID, severity and a link to the fixing commit
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Android Security Bulletins

Extract of March 2022 Bulletin
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Roy: Tool Overview

Objective

Based on the Security Patch Level, find CVEs affecting a device.

How does it work?

1. Crawl Android Security Bulletins

2. Parse results

3. Store them in a database
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Towards Binary Artefacts

Motivations

Not every vulnerability is found in Open Source.
There exists a need for binary only solutions.

Why using AOSP?

AOSP is a perfect target for building binary artefacts:

� Cross architecture Operating System

� Documented and working build system

� Information precise at a commit level (Roy)
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AOSPBuilder: Overview

Process

1. Reuse Roy results for vulnerabilities

2. Prepare a build environment for AOSP

3. (Build-magic)

Roy

AOSP

Extract  
CVE Data

Build vulnerable version

Build fix version

Build diffing

Fixed binaries

Vulnerable
binaries
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Dataset Overview: At Source Level

Results

� Huge set of vulnerabilities (3400+ and more than 1900 with commits)
� Ever increasing but parser often needs to be updated

Limitations

� Only Open Source components
� Rely on Google’s commitment to publish bulletins
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Dataset Overview: At Source Level
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Dataset Overview: At Binary Level

Results

� 600 vulnerabilities compiled
� 120 GB links to download on GitHub

� 4 architectures the same binaries in various architectures

Limitations

� Only vulnerabilities on C/C++
� Build automation is hard: lots of failures
� Only vulnerabilities after Android 6
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Dataset Overview: At Binary Level

CVE-2017-0738 
(1d919d737)

X86 X86_64Arm ARM64

FixVuln FixVuln FixVuln FixVuln

6e6d6c2[...]_libbundlewrapper.so

ae4c026[...]_libbundlewrapper.so
 

7e8e7da[...]_libbundlewrapper.so

fd9556f0[...]_libbundlewrapper.so
 

functions.json
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Dataset Overview: At Binary Level

Object
35.8%

Library
34.8%

Executable
13.2%

Other
8.23%

Archive
7.92%

Binary Files Types

Name Count

libbluetooth.so 953

bluetooth.default.so 748

libnfc-nci.so 650

libstagefright.so 421

net_test_btif 417

Most Common Binaries
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Usage

� Information is stored in JSON Files

� A helper module in Python provided to
ease usage

aosp-dataset/
├── cves
│   ├── CVE-2012-6701.json
│   ├── CVE-2012-6702.json
│   ├── ....
├── LICENSE
├── precompiled
│   └── links.json
├── pyproject.toml
├── README.md
├── schemas
│   ├── AospCve.schema.json
│   ├── precompiled.schema.json
└── src
    └── aosp_dataset

Links towards
precompiled

vulnerabilities

CVE Details

Schemas
definitions

Python  
module
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Conclusion

Dataset

� +1,900 Commit-precise real-world vulnerabilities

� +600 Precompiled artefacts for four architectures

Useful for: Patch characterization, Silent fix detection, Cross architecture diffing …

� https://github.com/quarkslab/aosp_dataset
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Contact information:

� achallande@quarkslab.com

� +33 1 58 30 81 51
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