
Building a Commit-level Dataset of
Real-World Vulnerabilities
Alexis Challande, Robin David, Guénaël Renault

Biography

whoami
Alexis Challande, Ph.D. student (3rd year)
Collaboration between Quarkslab and LiX (Ecole Polytechnique/Inria) in France

Alexis Challande 1 / 16

Problem

Situation

Let’s imagine I have a shiny new tool that detect if a patch has been applied to a binary,

how do I test my solution efficiently?

Potential Solutions

� Gather a few couples of binaries from real vulnerabilities

� Create a synthetic project where I add hand-crafted vulnerabilities

� …

� Use the dataset presented today

Alexis Challande 2 / 16

Problem

Situation

Let’s imagine I have a shiny new tool that detect if a patch has been applied to a binary,

how do I test my solution efficiently?

Potential Solutions

� Gather a few couples of binaries from real vulnerabilities

� Create a synthetic project where I add hand-crafted vulnerabilities

� …

� Use the dataset presented today

Alexis Challande 2 / 16

Contributions

Commit Level Dataset
A dataset of more than 1,900 vulnerabilities:

� Based on real-world issues (CVEs);

� Precise at a Commit Level.

Precompiled Dataset

Binaries for a 600 of these vulnerabilities:

� 4 architectures (ARM, x86, x86-64, ARM64);
� With debug symbols.

� Available on GitHub at https://github.com/quarkslab/aosp_dataset.

Alexis Challande 3 / 16

https://github.com/quarkslab/aosp_dataset

Existing Work

� Standard Testing Suites (Juliet [1], CGC [2])
Synthetic, Small samples

� Generated Dataset (LAVA [3], MAGMA)
Only one bug type

� CVE Datasets (Akram and Ping [4], Li et al. [5])
Discontinued, Small dataset, Imprecise

Alexis Challande 4 / 16

Potential Applications

� Patch Characterization
Draw an identity card of Patch

� Silent Fix Detection
Detect if a commit was a security fix

� Cross Architecture Binary Diffing
Match the same binary across different architectures

� Patch Detection
Detect if a patch has been applied

� …
Alexis Challande 5 / 16

Android Open Source Project (AOSP)

What is AOSP?

Android Open
Source Project

~ 2200 projects

90 GB / version

270k files C/C++
/ version

~ 1250 tags

only 30 min of compilation / version
(with 56 cores)

97k files Java / version

6 architectures

Alexis Challande 6 / 16

Android’s security

Update process

� Multiple stakeholders (Google, OEM, carriers…)

� Intricated, complex, and usually not followed in time 2 years of security-update

� Project Treble [6] to solve part of the problem starting to get enforced

Android Security Bulletins by Google

� Monthly reports of vulnerability fixes in AOSP

� Contains CVE-ID, severity and a link to the fixing commit

Alexis Challande 7 / 16

Android Security Bulletins

Extract of March 2022 Bulletin

Alexis Challande 8 / 16

Roy: Tool Overview

Objective

Based on the Security Patch Level, find CVEs affecting a device.

How does it work?

1. Crawl Android Security Bulletins

2. Parse results

3. Store them in a database

Alexis Challande 9 / 16

Towards Binary Artefacts

Motivations

Not every vulnerability is found in Open Source.
There exists a need for binary only solutions.

Why using AOSP?

AOSP is a perfect target for building binary artefacts:

� Cross architecture Operating System

� Documented and working build system

� Information precise at a commit level (Roy)

Alexis Challande 10 / 16

AOSPBuilder: Overview

Process

1. Reuse Roy results for vulnerabilities

2. Prepare a build environment for AOSP

3. (Build-magic)

Roy

AOSP

Extract
CVE Data

Build vulnerable version

Build fix version

Build diffing

Fixed binaries

Vulnerable
binaries

Alexis Challande 11 / 16

Dataset Overview: At Source Level

Results

� Huge set of vulnerabilities (3400+ and more than 1900 with commits)
� Ever increasing but parser often needs to be updated

Limitations

� Only Open Source components
� Rely on Google’s commitment to publish bulletins

Alexis Challande 12 / 16

Dataset Overview: At Source Level

2015 2016 2017 2018 2019 2020 2021 2022*
0

200

400

600

800

1000

CVEs with commit CVEs

of

 C
V

E

CVE Evolution over time

2 4 6 8 10
0

1000

2000

3000

C

V
Es

CVSS scores

Alexis Challande 12 / 16

Dataset Overview: At Binary Level

Results

� 600 vulnerabilities compiled
� 120 GB links to download on GitHub

� 4 architectures the same binaries in various architectures

Limitations

� Only vulnerabilities on C/C++
� Build automation is hard: lots of failures
� Only vulnerabilities after Android 6

Alexis Challande 13 / 16

Dataset Overview: At Binary Level

CVE-2017-0738
(1d919d737)

X86 X86_64Arm ARM64

FixVuln FixVuln FixVuln FixVuln

6e6d6c2[...]_libbundlewrapper.so

ae4c026[...]_libbundlewrapper.so

7e8e7da[...]_libbundlewrapper.so

fd9556f0[...]_libbundlewrapper.so

functions.json

Alexis Challande 13 / 16

Dataset Overview: At Binary Level

Object
35.8%

Library
34.8%

Executable
13.2%

Other
8.23%

Archive
7.92%

Binary Files Types

Name Count

libbluetooth.so 953

bluetooth.default.so 748

libnfc-nci.so 650

libstagefright.so 421

net_test_btif 417

Most Common Binaries

Alexis Challande 13 / 16

Usage

� Information is stored in JSON Files

� A helper module in Python provided to
ease usage

aosp-dataset/
├── cves
│ ├── CVE-2012-6701.json
│ ├── CVE-2012-6702.json
│ ├──
├── LICENSE
├── precompiled
│ └── links.json
├── pyproject.toml
├── README.md
├── schemas
│ ├── AospCve.schema.json
│ ├── precompiled.schema.json
└── src
 └── aosp_dataset

Links towards
precompiled

vulnerabilities

CVE Details

Schemas
definitions

Python
module

Alexis Challande 14 / 16

Conclusion

Dataset

� +1,900 Commit-precise real-world vulnerabilities

� +600 Precompiled artefacts for four architectures

Useful for: Patch characterization, Silent fix detection, Cross architecture diffing …

� https://github.com/quarkslab/aosp_dataset

Alexis Challande 15 / 16

https://github.com/quarkslab/aosp_dataset

Thank you
Contact information:

� achallande@quarkslab.com

� +33 1 58 30 81 51

� https://www.quarkslab.com

https://www.quarkslab.com

References I

Frederick Boland and Paul Black.
The juliet 1.1 c/c++ and java test suite.
(45).
Publisher: Computer (IEEE Computer).

DARPA.
Cyber grand challenge.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil
Robertson, Frederick Ulrich, and Ryan Whelan.
LAVA: Large-scale automated vulnerability addition.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 110–121. IEEE.

Junaid Akram and Luo Ping.
How to build a vulnerability benchmark to overcome cyber security attacks.
14(1):60–71.

Alexis Challande 1 / 9

References II

Frank Li and Vern Paxson.
A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2201–2215. ACM.

Iliyan Malchev.
Here comes treble: A modular base for android.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.
Neural network-based graph embedding for cross-platform binary code similarity
detection.
pages 363–376.

Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei Zou.
αdiff: cross-version binary code similarity detection with DNN.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering - ASE 2018, pages 667–678. ACM Press.

Alexis Challande 2 / 9

References III

Jiyong Jang, Abeer Agrawal, and David Brumley.
ReDeBug: Finding unpatched code clones in entire OS distributions.
In 2012 IEEE Symposium on Security and Privacy, pages 48–62. IEEE.

Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad
Rieck, Sascha Fahl, and Yasemin Acar.
VCCFinder: Finding potential vulnerabilities in open-source projects to assist code
audits.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS ’15, pages 426–437. ACM Press.

Zhen Liu, Qiang Wei, and Yan Cao.
VFDETECT: A vulnerable code clone detection system based on vulnerability
fingerprint.
In 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference
(ITOEC), pages 548–553. IEEE.

Alexis Challande 3 / 9

References IV

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu.
VulPecker: an automated vulnerability detection system based on code similarity
analysis.
In Proceedings of the 32nd Annual Conference on Computer Security Applications,
pages 201–213. ACM.

Yaqin Zhou and Asankhaya Sharma.
Automated identification of security issues from commit messages and bug reports.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2017, pages 914–919. ACM Press.

Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumitras.
The attack of the clones: A study of the impact of shared code on vulnerability
patching.
In 2015 IEEE Symposium on Security and Privacy, pages 692–708. IEEE.

Alexis Challande 4 / 9

References V

Google.
Android security bulletins.

MITRE Corporation.
MITRE.

Alexandre Dulaunoy and Pieter-Jan Moreels.
cve-search - a free software to collect, search and analyse common vulnerabilities and
exposures in software.

Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cedric
Dangremont.
A manually-curated dataset of fixes to vulnerabilities of open-source software.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 383–387. IEEE.

Alexis Challande 5 / 9

References VI

Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags.
Hey google, what exactly do your security patches tell us? a large-scale empirical study
on android patched vulnerabilities.

Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu.
BinXRay: Patch based vulnerability matching for binary programs.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 376–387. ACM.

Bas van Schaik and Kevin Backhouse.
FPs are cheap. show me the CVEs!

CVE-2020-0471.

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh.
VUDDY: A scalable approach for vulnerable code clone discovery.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 595–614. IEEE.

Alexis Challande 6 / 9

References VII

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin.
DeepBinDiff: Learning program-wide code representations for binary diffing.
In Proceedings 2020 Network and Distributed System Security Symposium. Internet
Society.

Guru Prasad Bhandari, Amara Naseer, and Leon Moonen.
CVEfixes: Automated collection of vulnerabilities and their fixes from open-source
software.

Hang Zhang and Zhiyun Qian.
Precise and accurate patch presence test for binaries.
In 27th USENIX Security Symposium (USENIX Security 18), pages 887–902. USENIX
Association.

Yinxing Xue, Zhengzi Xu, Mahinthan Chandramohan, and Yang Liu.
Accurate and scalable cross-architecture cross-OS binary code search with emulation.
45(11):1125–1149.

Alexis Challande 7 / 9

References VIII

Min-je Choi, Sehun Jeong, Hakjoo Oh, and Jaegul Choo.
End-to-end prediction of buffer overruns from raw source code via neural memory
networks.

Patrick Morrison, Kim Herzig, Brendan Murphy, and Laurie Williams.
Challenges with applying vulnerability prediction models.
In Proceedings of the 2015 Symposium and Bootcamp on the Science of Security,
pages 1–9. ACM.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and
Yuyi Zhong.
VulDeePecker: A deep learning-based system for vulnerability detection.

Alexis Challande 8 / 9

References IX

Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia.
Detecting ”0-day” vulnerability: An empirical study of secret security patch in OSS.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 485–492.
ISSN: 1530-0889.

Paul E. Black.
A software assurance reference dataset: Thousands of programs with known bugs.
123:123005.

Universal ctags.
original-date: 2010-03-25T10:43:13Z.

Google.
gitiles - git at google.

Alexis Challande 9 / 9

	Appendix

