
Proceedings of the 28th C&ESAR (2021) 27

From source code to crash test-cases through software
testing automation
Robin David1, Jonathan Salwan2 and Justin Bourroux3

1Quarkslab, 13 rue Saint Ambroise, Paris, France
2Pirate, Atlantic Ocean, Earth
3DGA-MI, Bruz, France

Abstract
Finding weaknesses and vulnerabilities in a source code is a difficult task. An approach to tackle this issue is
static analysis. However, existing solutions and tools tend to generate numerous alerts and especially false
positives. This paper presents an approach automating the software testing process from source code up to the
dynamic testing of the compiled program. More specifically, from a static analysis report indicating alerts on
source lines, it enables trying to cover these lines dynamically and opportunistically checking whether or not
they can trigger a crash. The result is a test corpus allowing to cover alerts and to trigger them if they happen
to be true positives. This paper discusses the methodology employed to track alerts down in the compiled
binary, the testing engines selection process and the results obtained on a TCP/IP stack implementation for
embedded and IoT systems.

Keywords
Software Testing, Static Analysis, Fuzzing, Dynamic Symbolic Execution, Vulnerability Research

1. Introduction
Context Evaluating the security and finding flaws
in source code is a tedious task in software test-
ing. As a baseline, multiple guidelines have been
published for a wide range of industries like auto-
motive [1], aircraft [2] or aerospace [3] to identify
weak and vulnerable code constructs. Applied for C
code, the most known are MISRA C [4] and CERT
C [5]. These standards are integrated in off-the-shelf
static analyzers [6, 7, 8] which usually generate nu-
merous alarms with substantially high false-positive
rates. Therefore, analyzing results is a lengthy and
cumbersome process. Few research in litterature
intend to solve the issue of validating alarms as
generating a crashing or a violating test-case is an
open research question. It requires solving both a
reachability and a satisfiability issue in the program.

Our research does not address this issue directly
but aims at bridging the gap between alerts identi-
fied at source level and the dynamic testing. That
process aims at opportunistically covering and val-
idating these alerts. We intend to automate the
process as much as possible so that the analyst can
focus on hard to reach corner-case alerts. This re-

C&ESAR’21: Automation in cybersecurity, November
16–17, 2021, Couvent de Jacobins, Rennes, France
$ rdavid@quarkslab.com (R. David);
jsalwan@quarkslab.com (J. Salwan)

© 2021 Copyright for this paper by its authors. Use
permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR Workshop Proceedings (CEUR-
WS.org)

search is performed in the context of the PASTIS
project (Programme d’Analyse Statique et de Tests
Instrumentés pour la Sécurité) financed by DGA-
MI which focuses on C, C++ programs and more
specifically network related services.

Contributions We present an automated testing in-
frastructure combining different testing techniques,
namely fuzzing and Dynamic Symbolic Execution
(DSE). Combining heterogenous testing engines to
fuzz the same target is now usually called ensemble
fuzzing [9].

We implemented our own fuzzing infrastructure
and performed an experimental study of existing
testing techniques namely fuzzing and DSE. We
developped a benchmark test suite trying to reveal
idiosyncratic behaviors of tested tools. Based on
results obtained we selected honggfuzz [10] and
triton [11], respectively for fuzzing and DSE. To
summarize our research provides the following con-
tributions:

• experimental study of existing techniques
and tools on a dedicated benchmark ;

• combination of a static analyzer with an en-
semble fuzzer aggregating heterogenous soft-
ware testing engines (greybox fuzzing and
DSE);

• consolidation of this combination in a semi-
automated workflow that starts from alerts
on source code lines, track them back in
the compiled binary and triggers automated

mailto:rdavid@quarkslab.com
mailto:jsalwan@quarkslab.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org

From Source Code to Crash Test-Case through Software Testing Automation

28 Proceedings of the 28th C&ESAR (2021)

testing to cover them and to trigger the bug
if any. That process leads to the generation
of a test corpus;

• benchmark assessing the robustness of two
TCP/IP stacks which enabled uncovering a
remote Denial-of-Service (DOS) which got
assigned the identifier CVE-2021-267881.

2. Experimental study of
techniques and tools

2.1. Software testing techniques
In the past decade, fuzzing [12] and dynamic sym-
bolic execution [13], two software testing techniques,
have revealed themselves as being very efficient at
detecting and triggering bugs. While fuzzing tends
to be very fast it can be hindered by some code
constructs preventing it to progress in program ex-
ploration. Contrarily, DSE reasons more precisely
on a per path manner but is significantly slower.
Hence, we assessed various fuzzers and DSE engines
to select one candidate of each to be combined to-
gether. Criterias and methodology are described in
Section 2.2.

Fuzzing is the mean of feeding pseudo-random in-
puts to the program in order to trigger unexpected
behaviors. Inputs can be generated randomly or
using some feedback mechanisms. The most com-
monly used feedback is coverage but other feed-
backs have been proposed in litterature [14]. So-
called greybox fuzzers like AFL [15], libfuzzer [16]
or honggfuzz [10] uses compilation-time static in-
strumentation of the program to obtain feedback at
runtime.

AFL Honggfuzz AFL/QBDI PULSAR
Version 2.52b 1.7 - -
Language C C C Python
Open-source ✓ ✓ ✓ ✓

binary fuzzing ✗ ✗ ✓ ✗

Static instr. ✓ ✓ ✓ ✓

Dynamic instr. ✗ ✗ ✓ ✗

Seed-scheduling ✓ ✓ ✓ ✗

model input gen. ✗ ✗ ✗ ✓

mutation input gen. ✓ ✓ ✓ ✓

In-memory fuzzing ✓ ✓ ✓ ✗

Crash dedup/prio. ✓ ✓ ✓ ✗

Table 1
Comparison of selected fuzzers

Table 1 shows fuzzers that have been assessed.
1https://nvd.nist.gov/vuln/detail/CVE-2021-26788

AFL and Honggfuzz are two leading implementations
of greybox fuzzers (now superseded by AFL++ [17]).
AFL/QBDI enables binary-only fuzzing by interfacing
AFL with QBDI [18]. This combination also enables
on the fly optimizations, for instances, breaking
comparisons with constants which are notoriously
hard in mutational approaches. PULSAR has been
selected for its availability to test network protocols.
Input generation based on models (partially infered)
in comparison to AFL and Honggfuzz which are using
genetic algorithms [19].

Dynamic Symbolic Execution also called whitebox-
fuzzing uses a modeling of instruction semantic be-
havior to perform its execution. Instructions are
disassembled and lifted in a semantic representation
called intermediate representation used for emula-
tion. A path 𝜋 in the program is then represented
as a first-order logic formula (usually on bitvectors)
that is then given to an SMT solver [20]. A solution
of this formula is an input covering the path 𝜋.

manticore KLEE angr Triton
Version 0.2.5 2.1 8.18 0.7
Langage Py C++ Py C++, Py
Open-source ✓ ✓ ✓ ✓

Base binary source binary binary
Intermediate Repr. custom LLVM VEX custom
Variadic argv size ✗ ✗ ✓ ✗

Library calls ∼ ✓ ✓ ∼
Syscalls ✓ ✓ ✓ ✗

Symbolic mem. read ✓ ✓ ✓ ✗

Symbolic mem. write ✗ ∼ ✓ ✗

bit-vectors ✓ ✓ ✓ ✓

Arrays ✓ ✓ ✓ ✗

Table 2
Comparison of selected DSE tools

Table 2 shows DSE engines tested in this study.
Both manticore [21] and angr [22] are developped
in Python and provide similar features. They imple-
ment a wide range of library calls and syscalls, and
support to some extend symbolic reads and writes
in memory. Triton [11] provides more elementary
functionalities but is designed to be modular in or-
der to be embedded in a whole set of other utilities.
KLEE [23] works on LLVM and is the reference in
DSE.

2.2. Methodology & Benchmarking
To bring out two final candidates for fuzzing and
DSE, we designed a test suite. It enables checking
specific behaviors on small snippets (atomic tests) as
well as testing the scale on larger programs. Atomic

https://nvd.nist.gov/vuln/detail/CVE-2021-26788

R. David, J. Salwan and J. Bourroux

Proceedings of the 28th C&ESAR (2021) 29

tests assess the behavior, on symbolic pointers, han-
dling of non-deterministic instructions and a variety
of vulnerability categories (buffer-overflow, integer-
overflow, use-after-free etc.). For scalability bench-
mark, uniq and base64 binaries of the LAVA-M
project [24] have been used. This suite provides the
ground truth along with some quantitative results
(72 bugs in total in the two binaries).

To smooth statistical discrepancies of results
caused by the random nature of fuzzing, tests were
run multiple times and the mean value was com-
puted. Each 70 atomic tests were run 3 times for a
maximum duration of 300 seconds while scale bina-
ries were run 3 times for 6h. Table 3 shows synthetic
results of all utilities on this test suite2. Every tools
have been configured opportunistically with the
best parameters to provide them fair chances. The
PULSAR results have been excluded because it was
not possible to run it correctly on the benchmark
targets due to its network protocols focus.

Atomic (70) Scale (72) Total (142)
AFL 48 0 48/142
Honggfuzz 54 44 100/142
AFL/QBDI 47 33 80/142

manticore 34 0 34/142
KLEE 47 1 48/142
angr 37 0 37/142
Triton 47 0 47/142

Table 3
Test suite benchmark results

Fuzzing results shows that honggfuzz outper-
formed other engines and it has consequently been
kept as the reference engine for fuzzing. For sym-
bolic execution, while klee [23] outperformed other
engines Triton has been selected. Being develop-
pers of Triton, the code is familiar to us, which
makes it very easy to extend it and to modify it for
PASTIS needs. Also, KLEE comes with two main
issues for combining it with other fuzzing engines.
First, as it works at LLVM-IR level it requires the
program at source-level3. Then its code-base is
evolving fast and contains many research-related
features making it difficult to integrate it in a fully-
automated workflow.

2Versions of tools are slightly outdated has the experi-
ment was perfomed in 2018.

3While it is the case in this study, our goal was to make
the PASTIS framework applicable to binary-only targets.

3. Testing Automation
3.1. Overview
The process of automating the dynamic testing of a
source code is depicted in Figure 1. First, the code
has to be harnessed4 to target the components of
interest. It has to be prepared for both fuzzing and
symbolic execution, which both have to be compiled
differently. That step is highly manual and usually
requires a good understanding of the target. Then
the harnessed code can be provided to a Source
Code Analysis Tool (SAST) that will generate a
report of suspicious lines of code. These data are
used to embed intrinsic function5 calls in the target
in an automated manner. The code is compiled and
provided to both testing engines that will intend to
cover faulty lines and to generate crashing inputs.
During that process they will communicate together
to help each other. The final output is a report of
alerts, indicating whether they have been covered
or not and whether a crash has been associated to
it. Automating most of these steps enable pruning
some alerts enabling the analyst to focus on deepest
uncovered ones.

For the purpose of this research, a fuzzing cam-
pain is expected to run for at most 24h. That time
cap has arbitrarily been set at the begining of the
PASTIS project.

3.2. Collaborative architecture
A challenge in designing an automated workflow
is making the fuzzing and DSE to collaborate to-
gether and determining what kind of information to
exchange. As both of these approaches work rather
differently and have different notions of coverage,
exchanging this kind of information directly is in-
herently complicated. Moreover, it makes difficult
integrating new engines. Hence, each engine solely
exchange input seeds they generate with regards to
theirs own coverage metric. The remote engine is
in charge of deciding whether it is valuable to keep
an input or not. The exchange medium is described
in Section 4.

The communication is performed through a cen-
tral authority called broker which enables connect-
ing multiple instances of the engines. Figure 2 shows
the general overview of the collaborative architec-
ture. At startup, the broker provides the binary
with appropriate parameters to the engines. Then
during the execution it forwards all the inputs re-

4Explaining the process is left out-of-scope for this paper.
5ad-hoc function added in a code base, that will receive

specific processing at runtime by a third-party tool.

From Source Code to Crash Test-Case through Software Testing Automation

30 Proceedings of the 28th C&ESAR (2021)

Source
code

code
harnessing SAST Alerts

report
intrinsic
insertion

DSE

Report
- coverage
- validation

fuzzingcompilation
for fuzzer

compilation
for DSE

Figure 1: Full Analysis Workflow

Fuzzing
pastis-honggfuzz

DSE
pastis-triton

Python driver

Honggfuzz

 Pastis-DSE

communication
(libpastis)

communication
(libpastis)

Master
pastis-broker

communication
(libpastis)

execve

Initial Configuration
- binary
- SAST report (klocwork)
- configurations (coverage strategy, etc)

Workspace
- corpus / crashes / hangs
- log and client statistics
- CSV of results

Triton
(symbolic execution of one path)

TritonDSE
(exploration of paths)

1
2
3
4
5

 1. Connection (idle)
 2. Reception of binary (+opts)
 3. Seed exchange (+logs)
 4. Infos of alert validation
 5. Stop

1
2
3

4

5

Figure 2: Global Collaborative Architecture Overview

ceived from one engine to the others. During the
fuzzing campaign, if an engine covers or validates
an alert it sends its identifier and the associated
input to the broker that centralizes all data.

Alert Validation To validate alerts discovered at
source-level they have to be trackable down in the
compiled binary for the test engines. Compiling
binaries in debug mode enables tracking the asso-
ciated line of code for each assembly instructions.
However, that requires each engines to be able to
leverage debug information.

#ifdef QB_INTRINSIC
int __klocwork_alert_placeholder(int id,

const char* fmst, ...){→˓

printf("REACHED ID %d\n", id);
return id;

}
#endif

Listing 1: Intrinsic function

Hence our workflow uses intrinsic functions. The
Listing 1 shows the intrinsic function used. It takes
an identifier, a format string and an arbitrary num-
ber of values as argument. Its sole purpose is print-
ing the identifier given in parameter. Then, at each
alert location a call to this function will be added
with an unique identifier, the type of issue identified
by the static analyzer and contextual parameters.
For instance, it enables retrieving sizes of buffers
that is known to the compiler but lost once com-
piled.

At runtime, a test engine will either have to parse
stdout to find covered alerts, or to directly hook the
intrinsic functions (depending on its inner-working).
When detecting a crash or violation, engines are
in charge to map it to a previously covered alert
if applicable. Tracking the root-cause of a crash is
still an open research problem [25] thus it is done
here in an empirical manner. The last encountered
alert is considered to be the cause of the crash and
is thus considered validated. Note that we cannot
invalidate an alert as being a false positive because
of the potential infinite numbers of paths leading to
that code location (path combinatorial problem).

R. David, J. Salwan and J. Bourroux

Proceedings of the 28th C&ESAR (2021) 31

Figure 3: Sample alert report Klocwork

Crashes or violations are detected in a different
manner between fuzzing and DSE. Modern fuzzers
uses sanitizers like ASan [26], UBSan [27] or else
TSan [28] that respectively detect: memory corrup-
tions, undefined-behavior or race-conditions. DSE
engines usually implement their own sanitizers that
leverage the analysis precision of symbolic execu-
tion to implement fine-grain sanitizers. In this case,
the sanitizers can also use contextual information
provided as argument of intrinsic functions to im-
plement their checks.

4. Implementation
Target Setup Once the harness of the target pro-
gram is implemented for all fuzzers included in the
platform, the code is given to the SAST tool. In
this research, the software Klocwork [7] developped
by Perforce has been used. As output of its analy-
sis, it provides an HTML file indicating faulty lines
along with some additional contextual data (vari-
able names, buffer sizes ...). Figure 3 provides an
exemple of such report.

Our semi-automated workflow takes the report
in input, translates it in JSON for easier processing
and uses the result to automatically add intrinsic
function calls in the source code. This code addition
is made syntactically on a per line basis and thus
requires to be double-checked by the analyst6. Then
the various variants of the program are compiled for
each engines or target architecture (x86_64, ARM).
The target program is now ready to be tested using
the PASTIS framework.

PASTIS Farmework The main interface with the
analyst is the broker called pastis-broker. It is
implemented in Python and ensures all communica-
tions between engines. The communication protocol

6An implementation using clang AST is being studied.

is based on the message-queuing framework ZMQ7

so that it is interoperable with almost all existing
programming languages.

The analyst launches pastis-broker with all the
target binary variants, an initial corpus if needed,
some configuration parameters, and the klocwork
report to stop the campaign when all alerts are
covered or validated.

Then the various test engines have to be launched
with the broker IP address to receive all the fuzzing
campaign data. If an engine supports different cov-
erage strategies (block, edge, path etc) and multiple
instances are connected to the broker, it will auto-
matically equilibrate the coverage strategies.

Honggfuzz Integration Honggfuzz [10] is a mod-
ern greybox fuzzer developped in C++. Besides,
being very efficient on many targets it has not been
designed for collaborative fuzzing. As a consequence,
small modifications have been made on its core. The
most important is the ability to receive new inputs
while it is already fuzzing8. Thereupon, a Python
wrapper has been developped to perform all commu-
nications with the broker, to parse stdout, to inject
external inputs received and to send the broker all
inputs generated.

Such overlay is called a driver, as it enables inter-
facing an existing engine to the PASTIS framework.
Figure 4 summarizes the main interactions between
Honggfuzz and the wrapper with which all inter-
communications are performed through filesystem
monitoring (inotify on Linux). The whole compo-
nent is called pastis-honggfuzz.

Triton Integration Triton [11] is a DSE frame-
work library designed to perform symbolic execu-
tion on a given path. The whole logic of loading the
program, scheduling input seeds, covering different

7https://github.com/zeromq
8The feature had been submitted as merge request.

https://github.com/zeromq

From Source Code to Crash Test-Case through Software Testing Automation

32 Proceedings of the 28th C&ESAR (2021)

pastis-honggfuzz

HF-Wrapper

Honggfuzz

communication
(libpastis)

execve

writing of corpus
and crashes

KlocworkReportReplay

Workspace

inputs

outputs

crashscoverage

initial dynamic

stats.log target

inotify folder
modification

add logs +
telemetry

inotify on the
file

reading
(in a loop)

Figure 4: Honggfuzz engine

paths is left to the developper. To address this issue,
a fully-featured DSE engine called TritonDSE has
been developed at the top of Triton. For the pur-
pose of the PASTIS framework, a program called
PastisDSE has also been built on top of TritonDSE.
This program performs all the communications with
the broker which include receiving external inputs
and sending ones generated by Triton. Figure 5
summarizes interactions of these components within
the so-called pastis-triton component.

That component implements code, edge and path
coverage strategies. It also implements different san-
itizers for each category of vulnerability considered.
As such, memory operations are tracked at the bit-
level, and it enables detecting pecisely off-by-one
(OB1). Use-After-Free are detected by tracking the
malloc and free primitives.

In this setting, pastis-triton is launched in
pure-emulation (thus not as a concolic engine) to
better control all side-effects and to allow the execu-
tion of Aarch64 binaries on x86 hosts. In essence, it
has to emulate all the side-effects performed on the
system (libc functions, syscalls etc). As it cannot
be exhaustive, it only supports a limited number of
libc functions and syscalls.

pastis-triton

Pastis-DSE

communication
(libpastis)

Triton
(symbolic execution of one path)

Tritondse
(exploration of paths)

Strategy
 (ALERT_ONLY, CHECK_ALL)

Workspace

seeds

 hangsworklist

metadata

config.json target

crashescorpus

Callbacks

Figure 5: pastis-triton engine overview

5. Experimental Results
5.1. CycloneTCP target
While this technique is applicable to any kind of
software, the PASTIS project is centered on test-
ing low-level network TCP/IP stacks. Among ex-
isting open-source implementations, CycloneTCP9

developped by Oryx-embedded, provides an imple-
mentation for a wide variety of protocols. Recent
publications have shown it to be robust in compari-
son to other TCP/IP stacks [29].

The stack provides a driver mechanism to receive
network frames for various MCUs and OSes. The
target program is a simple HTTP server with a
single static page. Only standard protocols are ac-
tivated (Ethernet, IP, TCP, HTTP, ARP) in the
target. Other protocols like, DNS, LLMNR, MBNS
are not activated to focus on assessing the abil-
ity of engines to handle full TCP communications.
The harness implements a driver which reads in-
put frames from a file. A single input is thus a
sequence of frames representing incoming messages
from a client. The harness also tears down the multi-
threading logic into a single threaded application
enabling processing network frames in a sequen-
tial manner. While it prevents finding potential
race-conditions it strongly reduces non-reproducible
test-cases. As part of the harness, various patches
were made in the code to remove checksums ver-
ification, add a pre-registered ARP lease (for the
client) and to remove randomness of TCP Initial
Sequence Number (ISN).

5.2. Controlled environement
To assess the workflow effectiveness, defects and
vulnerabilities have been added to the CycloneTCP
code. Defects are code constructs raising a SAST
alert but which are structurally not triggerable, and
vulnerabilities are defects that can be triggered.
Such controlled benchmark enables checking the
effectiveness of the framework to cover secluded
locations of the code and to trigger vulnerabilities
by creating the appropriate test-case (input).

Adding relevant defects is tedious as they have
to fullfil the following properties:

• reachability: they have to be reachable by a
test-case

• conditionality: they should be reachable un-
der some conditions (not covered systemati-
cally)

9https://www.oryx-embedded.com/products/
CycloneTCP

https://www.oryx-embedded.com/products/CycloneTCP
https://www.oryx-embedded.com/products/CycloneTCP

R. David, J. Salwan and J. Bourroux

Proceedings of the 28th C&ESAR (2021) 33

• non-interference: a defect should not alter
the reachability, detectability of another one

• detectability: vulnerabilities should be trig-
gerable

• expressiveness: the coverage shall express the
exhaustivness of the coverage (e.g: managing
to craft DHCP header, managing to enter
HTTP parser, IPv4 reassembly etc)

To diversify vulnerabilities, 5 types are considered:
BoF for buffer-overflow, IoF for integer-overflow, OB1
for off-by-one, FMT for format-string (handling user-
input as format), UaF for Use-After-Free and SIGS
for memory corruption (null pointers dereference
etc). Among the 20 defects added (shown in Ta-
ble 4), 5 of them were not detected by the SAST
(klocwork). Weaknesses of SAST tools is left out-
of-scope for this research. In the automated process,
no intrinsic functions are added for these issues and
thus cannot be detected and validated. As a conse-
quence, the benchmark contains 15 issues for which
the ground-truth is available. The PASTIS frame-
work then have to cover and validate alerts within
the 24h time slot. Also, the test engine starts its
campaign with a single input in its initial corpus
that represents a complete TCP connection.

5.3. Results
Table 4 shows coverage and detection results.
Within 24h, all intrinsic function calls correspond-
ing to identified alerts have been covered and 77%
of vulnerabilities correctly validated. Multiple vul-
nerabilities are validated in less than a minute and
few of them took more than 3 hours to be detected.

The generated test corpora covers 42% of the
whole code lines. While it seems low, it repre-
sent almost all the coverable code. The rest being
client-side functions only called when being used
as a client. Besides that, the code is written in a
defensive manner which implies that multiple error-
handling code are never covered. For instance, code
handling malloc errors is never called as no out of
memory were triggered. Quantitative results and
experiments revealing the improvement of combin-
ing both testing engines have not yet been evaluated
and is left as a future work.

Depending on the class of defects, validation dif-
ficulty varies. For example, FMT appeared to be
harder to trigger as it requires the engine to gener-
ate faulty format strings (e.g %s). Conversly, IoF do
generates multiple false positives as the engine does
not know if the operation is performed on signed or
unsigned integers.

As part of the testing, many test-cases were caus-
ing the program to hang forever. While it strongly
reduced the fuzzing speed it revealed to be a true
0-day in the parsing of TCP options. It has responsi-
bly been disclosed to Oryx-embedded which quickly
published a patch. The vulnerability obtained the
CVE identifier CVE-2021-2678810 11.

5.4. Limitations
Most of the analysis steps depicted in Figure 1 can
be automated, but as of now, the most difficult ones
still requires analyst. As expected, the analyst has
to write the harness for the target. He has to make
it compilable for all testing engines and he has to
control that automatic insertion of intrinsics does
not break the program semantic.

While this research shows that automating most
of the workflow is possible, combining both a fuzzer
and DSE raises multiples issues that are yet to be
addressed. Indeed, such heterogenous algorithms
hardly work together. Experiments shows that
fuzzing generates numerous test-cases that DSE
replays significantly more slowly. It thus spends a
significant amount of time performing its dry-run12

to update its coverage with inputs received. The
coverage synchronisation between engines is thus a
bottleneck for symbolic execution.

Also, DSE in pure emulation requires a large
number of syscall and external libraries modeling
to scale on significantly larger code base. From the
side-effect modeling perspective, scaling on signif-
icantly larger codebase can be addressed using a
concolic execution mode. Such an approach relies
more heavily on concrete values during the execu-
tion which does not need to be modeled. Conversely,
the reasoning power of the symbolic aspect is re-
duced as side-effects are not modeled symbolically.

Because of DSE limitations, current benchmarks
results do not reflect a clear gain in combining
fuzzing and DSE rather than running them sepa-
rately.

6. Related work
Static analysis warning driven exploration Com-
bining static analysis and dynamic testing to obtain
better results than each technique taken separately

10https://blog.quarkslab.com/
remote-denial-of-service-on-cyclonetcp-cve-2021-26788.
html

11https://nvd.nist.gov/vuln/detail/CVE-2021-26788
12Corpus replay to update the engine internal coverage.

Inputs run are not mutated. The dry-run typically decides
whether the input is worth being kept or not.

https://blog.quarkslab.com/remote-denial-of-service-on-cyclonetcp-cve-2021-26788.html
https://blog.quarkslab.com/remote-denial-of-service-on-cyclonetcp-cve-2021-26788.html
https://blog.quarkslab.com/remote-denial-of-service-on-cyclonetcp-cve-2021-26788.html
https://nvd.nist.gov/vuln/detail/CVE-2021-26788

From Source Code to Crash Test-Case through Software Testing Automation

34 Proceedings of the 28th C&ESAR (2021)

Id Type D V Proto. Function Honggfuzz Triton
Cov Val. Cov Val.

1 OB1 ∙ HTTP httpParseRequestLine ✓ ✓ ✗ ✗

2 FMT ∙ HTTP httpSendErrorResponse ✓ ✓ ✗ ✗

3 IoF ∙ HTTP httpSendRedirectResponse ✓ - ✓ -
4 BoF ∙ HTTP httpSendRedirectResponse - - - -
5 FMT ∙ HTTP httpReadRequestHeader ✓ ✗ ✗ ✗

6 UaF ∙ HTTP httpSendRedirectResponse - - - -
7 BoF ∙ HTTP httpParseRequestLine ✓ ✓ ✓ ✓
8 BoF ∙ HTTP httpParseContentTypeField ✓ ✓ ✓ ✓
9 FMT ∙ HTTP httpFormatResponseHeader ✓ - ✗ -
10 FMT ∙ HTTP httpParseContentTypeField ✓ ✗ ✗ ✗

11 OB1 ∙ HTTP httpDecodePercentEncoded. - - - -
12 IoF ∙ IPv4 ipv4ProcessPacket ✓ - ✓ -
13 SIGS ∙ ARP arpProcessReply ✓ ✓ ✓ ✓
14 SIGS ∙ ICMP icmpProcessEchoRequest ✓ - ✓ -
15 BoF ∙ ICMP icmpSendErrorMessage - - - -
16 UaF ∙ IPv4 ipv4FragmentDatagram ✓ ✓ ✓ ✗

17 OB1 ∙ core formatDate ✓ - ✓ -
18 SIGS ∙ ETH. ethSendFrame ✓ - ✗ -
19 UaF ∙ IGMP igmpProcessMessage ✓ ✓ ✓ ✓
20 IoF ∙ ICMP icmpUpdateInStats. - - - -
D: Default, V: Vulnerability, Cov: Covered, Val: Validated

Table 4
Inserted vulnerabilities and detection by Honggfuzz, Triton

has already been studied. From an error-condition
infered by a static checker Check ’n’ Crash [30] aims
at generating a test-case to validate if the error truly
exists.

Another combination called SANTE [31] uses the
static analyzer Frama-C [32] to detect potential
runtime errors. The result is combined with
Pathcrawler [33], a DSE to generate a test-case
and to confirm the alarms. DyTa [34] another utility,
follows a similar approach.

Another category of related work rely on directed
approaches. Gerasimov [35] uses static analysis
warnings as targets for a directed DSE algorithm
iteratively reducing the distance with the warnings
to cover them. They use their own static analyzer
Svace [36]. In another publication [37] they also
study the reachability of the security warnings. The
work of Li et al. [38] suggests an approach dedicated
to Use-After-Free vulnerabilities where alloc and
free primitives are used to drive the exploration. In
a more general manner, multiple existing research
works focus on directed approaches to cover specific
locations of the program [14, 39, 40] but which are
not necessarily driven by a SAST.

Fuzzing & Symbolic Execution combination Var-
ious approaches combining these two testing tech-
niques have been proposed in the past. Koushik
Sen published in 2007 an Hybrid Concolic Testing
approach combining the two [41]. Later, Driller [42]
suggested a selective DSE algorithm launching Angr
solely when the fuzzing is getting stuck. More re-
cently QSym [43] intertwines the concolic execution
within the fuzzing in a very light yet fast manner.
Finally, multiple collaborative approaches allowing
to combine heterogenous fuzzing engines have been
proposed under the term ensemble fuzzing. Among
them, we can hightlight ClusterFuzz [44] by Google,
EnFuzz [9], Deepstate [45], collabfuzz [46] or more
recently OneFuzz [47] by Microsoft. To our knowl-
edge none of these ensemble fuzzers uses a static
analyzer as an input of test objectives.

7. Future work
These preliminary results open the way to fur-
ther experiments and benchmarks. Multiple ex-
periments can be made to optimize collaboration
of test engines. We are working on improving the
PASTIS framework by adding new fuzzing engines
like AFL++ [17], adding slicing features to better

R. David, J. Salwan and J. Bourroux

Proceedings of the 28th C&ESAR (2021) 35

guide the exploration with more directed strate-
gies or to enlarge the project scope to binary-only
targets.

8. Conclusion
This paper summarizes what has been done as part
of the PASTIS project and its implementation in
the PASTIS framework. We depict a test suite
enabling to discriminate and to choose a fuzzing
and DSE engine for the PASTIS plateform. We
then describe the full workflow that we intend to
automate. Namely, the paper discusses the process
of analysing a source code with a SAST tool, how
to embed this data in the final compiled program
and how to automate the process of testing it with
various heterogenous testing engines. The result
is a test corpus that can be integrated as tests in
the project. An analyst, can use these results, to
prune and ignore irrelevant alerts, performing the
root-cause on crashes and focusing on the remaining
alerts that have not been covered. This process is
required in a wide range of industries like aerospace,
automative, defense, energy or any context that
requires a higher level of insurance.

Acknowledgments
This research was realized by Quarkslab in the con-
text of the PASTIS project financed by DGA-MI
(Direction Générale de l’Armement, Maîtrise de
l’Information).

References
[1] ISO, Road vehicles – Functional safety, 2011.
[2] L. M. Corporation, Joint Strike Fighter Air Ve-

hicle C++ Coding Standards For The System
Development And Demonstration Program,
Lockheed Martin Corporation, 2005. [PDF].

[3] J. P. Laboratory, JPL Institutional Coding
Standard for the C Programming Language,
2009.

[4] M. I. S. R. Association, M. I. S. R. A. Staff,
MISRA C:2012: Guidelines for the Use of the C
Language in Critical Systems, Motor Industry
Research Association, 2013. [book].

[5] R. C. Seacord, The CERT C Secure Cod-
ing Standard, 1st ed., Addison-Wesley Pro-
fessional, 2008.

[6] G. Inc., Codesonar c/c++ sast when safety
and security matter, 2021. [site].

[7] Perforce, Klocwork static code analysis for c,
c++ and java, 2021. [site].

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, X. Rival, The astreé
analyzer, in: M. Sagiv (Ed.), Programming
Languages and Systems, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2005, pp. 21–30.

[9] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang,
C. Zhou, X. Jiao, Z. Su, Enfuzz: Ensemble
fuzzing with seed synchronization among di-
verse fuzzers, in: 28th USENIX Security Sym-
posium, Santa Clara, CA, USA, 2019, USENIX
Association, 2019, pp. 1967–1983. [site].

[10] R. Swiecki, F. Gröbert, honggfuzz, https://
github.com/google/honggfuzz, 2009.

[11] F. Saudel, J. Salwan, Triton: A dynamic sym-
bolic execution framework, in: Symposium sur
la sécurité des technologies de l’information et
des communications, SSTIC, France, Rennes,
June 3-5 2015, SSTIC, 2015, pp. 31–54.

[12] B. P. Miller, L. Fredriksen, B. So, An empir-
ical study of the reliability of UNIX utilities,
Commun. ACM 33 (1990) 32–44. doi:10.1145/
96267.96279.

[13] C. Cadar, K. Sen, Symbolic execution for
software testing: Three decades later, Com-
munications of the ACM 56 (2013) 82. doi:10.
1145/2408776.2408795.

[14] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao,
D. Wu, P. Su, Not all coverage measurements
are equal: Fuzzing by coverage accounting for
input prioritization, in: 27th Annual Network
and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, Febru-
ary 23-26, 2020, The Internet Society, 2020.

[15] M. Zalewski, American fuzzy lop, http://
lcamtuf.coredump.cx/afl/, 2018.

[16] L. Team, libfuzzer – a library for coverage-
guided fuzz testing, 2018. [site].

[17] A. Fioraldi, D. Maier, H. Eißfeldt, M. Heuse,
Afl++ : Combining incremental steps of
fuzzing research, in: 14th USENIX Work-
shop on Offensive Technologies (WOOT 20),
USENIX Association, 2020. [site].

[18] E. Geretto, C. Tessier, F. Massacci, A qbdi-
based fuzzer taming magic bytes, in: Italian
Conference on Cyber Security, ITASEC 2019,
Pisa, Italy, February 13-15 2019, CEUR Work-
shop Proceedings, 2019. [PDF].

[19] S. Rawat, V. Jain, A. Kumar, L. Cojocar,
C. Giuffrida, H. Bos, Vuzzer: Application-
aware evolutionary fuzzing, in: 24th Annual
Network and Distributed System Security
Symposium, NDSS 2017, San Diego, Cali-
fornia, USA, February 26 - March 1, 2017,

https://www.stroustrup.com/JSF-AV-rules.pdf
https://books.google.fr/books?id=3yZKmwEACAAJ
https://www.grammatech.com/codesonar-cc
https://www.perforce.com/products/klocwork
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1145/2408776.2408795
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/woot20/presentation/fioraldi
http://ceur-ws.org/Vol-2315/paper01.pdf

From Source Code to Crash Test-Case through Software Testing Automation

36 Proceedings of the 28th C&ESAR (2021)

2017. URL: https://www.ndss-symposium.
org/ndss2017/ndss-2017-programme/
vuzzer-application-aware-evolutionary-fuzzing/,
[PDF] [code] [video].

[20] L. M. de Moura, N. Bjørner, Satisfiabil-
ity modulo theories: introduction and appli-
cations, Commun. ACM 54 (2011) 69–77.
doi:10.1145/1995376.1995394.

[21] T. of Bits, Manticore: Symbolic ex-
ecution for humans, 2017. https:
//blog.trailofbits.com/2017/04/27/
manticore-symbolic-execution-for-humans.

[22] Y. Shoshitaishvili, R. Wang, C. Salls,
N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, G. Vigna, Sok:
(state of) the art of war: Offensive techniques
in binary analysis (2016).

[23] C. Cadar, D. Dunbar, D. R. Engler, KLEE:
unassisted and automatic generation of high-
coverage tests for complex systems programs,
in: 8th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California,
USA, Proceedings, 2008, pp. 209–224. [PDF]
[site].

[24] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek,
A. Mambretti, W. Robertson, F. Ulrich,
R. Whelan, Lava: Large-scale automated vul-
nerability addition, in: 2016 IEEE Symposium
on Security and Privacy (SP), 2016, pp. 110–
121. doi:10.1109/SP.2016.15, [PDF].

[25] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio,
V. P. Kemerlis, Retracer: Triaging crashes by
reverse execution from partial memory dumps,
in: Proceedings of the 38th International Con-
ference on Software Engineering, ICSE ’16,
ACM, New York, NY, USA, 2016, pp. 820–831.
doi:10.1145/2884781.2884844, [PDF].

[26] K. Serebryany, D. Bruening, A. Potapenko,
D. Vyukov, Addresssanitizer: A fast address
sanity checker, in: Presented as part of the
2012 USENIX Annual Technical Conference
(USENIX ATC 12), USENIX, Boston, MA,
2012, pp. 309–318. [PDF] [code].

[27] W. Dietz, P. Li, J. Regehr, V. Adve, Un-
derstanding integer overflow in c/c++, in:
Proceedings of the 34th International Confer-
ence on Software Engineering, ICSE ’12, IEEE
Press, Piscataway, NJ, USA, 2012, pp. 760–770.
[PDF].

[28] K. Serebryany, T. Iskhodzhanov, Threadsan-
itizer: Data race detection in practice, in:
Proceedings of the Workshop on Binary In-
strumentation and Applications, WBIA ’09,
ACM, New York, NY, USA, 2009, pp. 62–71.

doi:10.1145/1791194.1791203, [PDF].
[29] D. dos Santos, S. Dashevskyi, J. Wetzels,

A. Amri, How embedded tcp/ip stacks breed
critical vulnerabilities, 2020. [slide].

[30] C. Csallner, Y. Smaragdakis, Check ’n’
crash: Combining static checking and test-
ing, 2005, pp. 422–431. doi:10.1109/ICSE.
2005.1553585.

[31] O. Chebaro, N. Kosmatov, A. Giorgetti,
J. Julliand, Combining static analysis and
test generation for C program debugging,
in: Tests and Proofs - 4th International
Conference, TAP@TOOLS 2010, Málaga,
Spain, July 1-2, 2010. Proceedings, volume
6143 of Lecture Notes in Computer Science,
Springer, 2010, pp. 94–100. URL: https://
doi.org/10.1007/978-3-642-13977-2_9. doi:10.
1007/978-3-642-13977-2_9.

[32] F. Kirchner, N. Kosmatov, V. Prevosto,
J. Signoles, B. Yakobowski, Frama-c: A
software analysis perspective, Formal Asp.
Comput. 27 (2015) 573–609. doi:10.1007/
s00165-014-0326-7.

[33] N. Williams, B. Marre, P. Mouy, M. Roger,
Pathcrawler: Automatic generation of path
tests by combining static and dynamic anal-
ysis, in: Dependable Computing - EDCC-5,
5th European Dependable Computing Confer-
ence, Budapest, Hungary, April 20-22, 2005,
Proceedings, 2005, pp. 281–292. URL: https:
//doi.org/10.1007/11408901_21. doi:10.1007/
11408901_21.

[34] X. Ge, K. Taneja, T. Xie, N. Tillmann, Dyta:
dynamic symbolic execution guided with static
verification results, in: Proceedings of the 33rd
International Conference on Software Engineer-
ing, ICSE 2011, Waikiki, Honolulu , HI, USA,
May 21-28, 2011, ACM, 2011, pp. 992–994.
doi:10.1145/1985793.1985971.

[35] A. Y. Gerasimov, Directed dynamic symbolic
execution for static analysis warnings confir-
mation, Program. Comput. Softw. 44 (2018)
316–323. doi:10.1134/S036176881805002X.

[36] V. P. Ivannikov, A. A. Belevantsev, A. E.
Borodin, V. N. Ignatiev, D. M. Zhurikhin,
A. Avetisyan, Static analyzer svace for find-
ing defects in a source program code, Pro-
gram. Comput. Softw. 40 (2014) 265–275.
doi:10.1134/S0361768814050041.

[37] A. Y. Gerasimov, L. V. Kruglov, M. K. Er-
makov, S. P. Vartanov, An approach to reach-
ability determination for static analysis defects
with the help of dynamic symbolic execution,
Program. Comput. Softw. 44 (2018) 467–475.
doi:10.1134/S0361768818060051.

https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_10-2_Rawat_paper.pdf
https://github.com/vusec/vuzzer
https://www.youtube.com/watch?v=lfOGLUqpnvU
http://dx.doi.org/10.1145/1995376.1995394
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans
https://blog.trailofbits.com/2017/04/27/manticore-symbolic-execution-for-humans
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://klee.github.io
http://dx.doi.org/10.1109/SP.2016.15
http://moyix.net/lava.pdf
http://dx.doi.org/10.1145/2884781.2884844
https://softsec.kaist.ac.kr/~sangkilc/papers/cui-icse16.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://dx.doi.org/10.1145/1791194.1791203
https://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/35604.pdf
http://i.blackhat.com/eu-20/Wednesday/eu-20-dosSantos-How-Embedded-TCPIP-Stacks-Breed-Critical-Vulnerabilities.pdf
http://dx.doi.org/10.1109/ICSE.2005.1553585
http://dx.doi.org/10.1109/ICSE.2005.1553585
https://doi.org/10.1007/978-3-642-13977-2_9
https://doi.org/10.1007/978-3-642-13977-2_9
http://dx.doi.org/10.1007/978-3-642-13977-2_9
http://dx.doi.org/10.1007/978-3-642-13977-2_9
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/11408901_21
https://doi.org/10.1007/11408901_21
http://dx.doi.org/10.1007/11408901_21
http://dx.doi.org/10.1007/11408901_21
http://dx.doi.org/10.1145/1985793.1985971
http://dx.doi.org/10.1134/S036176881805002X
http://dx.doi.org/10.1134/S0361768814050041
http://dx.doi.org/10.1134/S0361768818060051

R. David, J. Salwan and J. Bourroux

Proceedings of the 28th C&ESAR (2021) 37

[38] M. Li, Y. Chen, L. Wang, G. Xu, Dynami-
cally validating static memory leak warnings,
in: Proceedings of the 2013 International Sym-
posium on Software Testing and Analysis, IS-
STA 2013, Association for Computing Machin-
ery, New York, NY, USA, 2013, p. 112–122.
doi:10.1145/2483760.2483778.

[39] M.-D. Nguyen, S. Bardin, R. Bonichon,
R. Groz, M. Lemerre, Binary-level directed
fuzzing for use-after-free vulnerabilities, in:
23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020),
USENIX Association, San Sebastian, 2020, pp.
47–62. [site].

[40] M. Böhme, V. Pham, M. Nguyen, A. Roy-
choudhury, Directed greybox fuzzing, in: Pro-
ceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, ACM, 2017, pp. 2329–2344.
doi:10.1145/3133956.3134020.

[41] R. Majumdar, K. Sen, Hybrid concolic test-
ing, in: 29th International Conference on Soft-
ware Engineering (ICSE 2007), Minneapolis,
MN, USA, May 20-26, 2007, 2007, pp. 416–426.
URL: https://doi.org/10.1109/ICSE.2007.41.
doi:10.1109/ICSE.2007.41.

[42] N. Stephens, J. Grosen, C. Salls, A. Dutcher,
R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, G. Vigna, Driller: Augmenting
fuzzing through selective symbolic execution,
in: 23rd Annual Network and Distributed Sys-
tem Security Symposium, NDSS, 2016.

[43] I. Yun, S. Lee, M. Xu, Y. Jang, T. Kim, QSYM
: A practical concolic execution engine tailored
for hybrid fuzzing, in: 27th USENIX Security
Symposium (USENIX Security 18), USENIX
Association, Baltimore, MD, 2018, pp. 745–761.
[site].

[44] Google, Clusterfuzz - scalable fuzzing infras-
tructure, 2021. [code].

[45] P. Goodman, G. Grieco, A. Groce, Tutorial:
Deepstate: Bringing vulnerability detection
tools into the development cycle, in: 2018
IEEE Cybersecurity Development, SecDev
2018, Cambridge, MA, USA, September 30
- October 2, 2018, 2018, pp. 130–131. doi:10.
1109/SecDev.2018.00028.

[46] S. Österlund, E. Geretto, A. Jemmett,
E. Güler, P. Görz, T. Holz, C. Giuffrida, H. Bos,
Collabfuzz: A framework for collaborative
fuzzing, in: Proceedings of the 14th Euro-
pean Workshop on Systems Security, EuroSec
’21, 2021, p. 1–7.

[47] Microsoft, Onefuzz - a self-hosted fuzzing-as-a-

service platform, 2021. [code].

http://dx.doi.org/10.1145/2483760.2483778
https://www.usenix.org/conference/raid2020/presentation/nguyen
http://dx.doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1109/ICSE.2007.41
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://google.github.io/clusterfuzz
http://dx.doi.org/10.1109/SecDev.2018.00028
http://dx.doi.org/10.1109/SecDev.2018.00028
https://github.com/microsoft/onefuzz

