Raffinement du diffing binaire par arbitrage de la similarité et du matching

CAID 2024

19 Novembre 2024, Rennes, France

Agenda

Partie 1: Introduction

Diffing binaire & similarité pour la <u>cybersécurité</u>

Partie 2: QBinDiff

- Algorithme de diffing par Belief Propagation
- Étude d'ablation

Partie 3: Benchmark

- Benchmark (en cas standard)
- Conclusion

Partie 1

Introduction

Comparaison de programmes = Diffing binaire

Définition

Comparer deux (ou plus) programmes pour analyser leurs différences. Effectué au niveau des fonctions avec une correspondance 1-to-1 (problématique quand des fonctions ont été ajoutées ou retirées)

Q

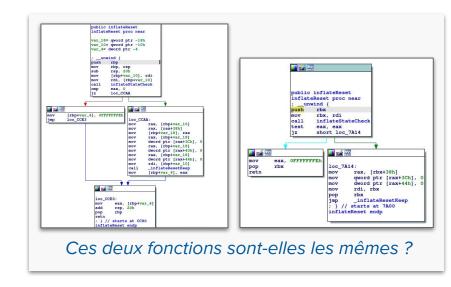
Comparaison de programmes = Diffing binaire

Définition

Comparer deux (ou plus) programmes pour analyser leurs différences. Effectué au niveau des fonctions avec une correspondance 1-to-1 (problématique quand des fonctions ont été ajoutées ou retirées)

Cas d'usage:

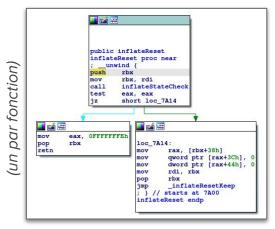
- → diffing de malware (analyse de nouvelles fonctionnalités)
- analyse de patch / 1-day analyse (Patch Tuesday, vérifier si un patch est correct)
- → anti-plagiat
- → identifier les bibliothèques compilées statiquement (binaire compilé statiquement vs bibliothèques)
- → porter des symboles (e.g. annotations d'IDA vers un nouveau binaire)
- → détection de backdoor (binaire légitime contre une version modifiée suspecte)
- diffing cross-architecture


Problématique

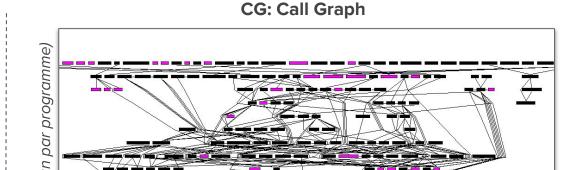
Comment comparer les fonctions de manière **résiliente** ? Quels **artefacts** utiliser pour cela ?

Contraintes:

- résilient à des mises à jour du code
- résilient à des options de compilations différentes
- résilient à de l'obfuscation (de préférence)
- résilient à des architectures différentes (de préférence)



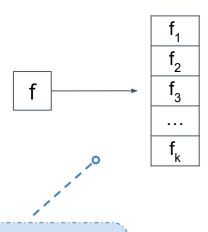
Représentation de base



Représentations

CFG: Control-Flow Graph

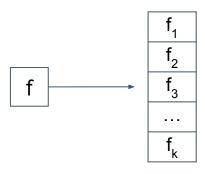
Noeuds: basic-blocs et arêtes: chemins possibles dans la fonction.


Noeuds: une fonction et arêtes: appels entre les fonctions.

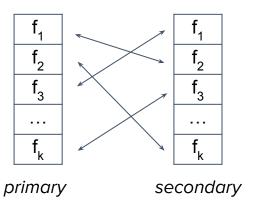
Diffing vs Similarité

Similarité

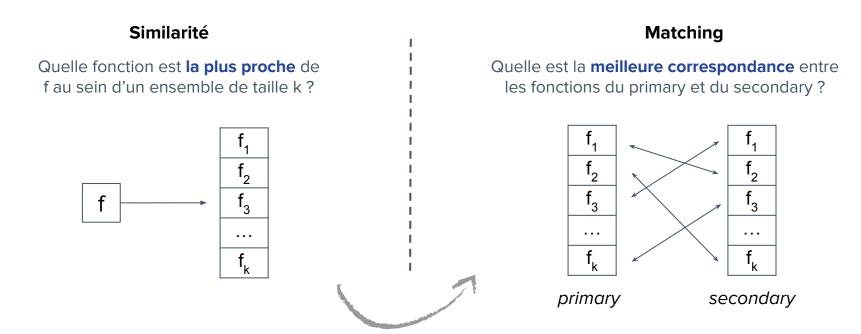
Quelle fonction est **la plus proche** de f au sein d'un ensemble de taille k?


recherche de vulnérabilités, détection de clones, filiation de code

Diffing vs Similarité

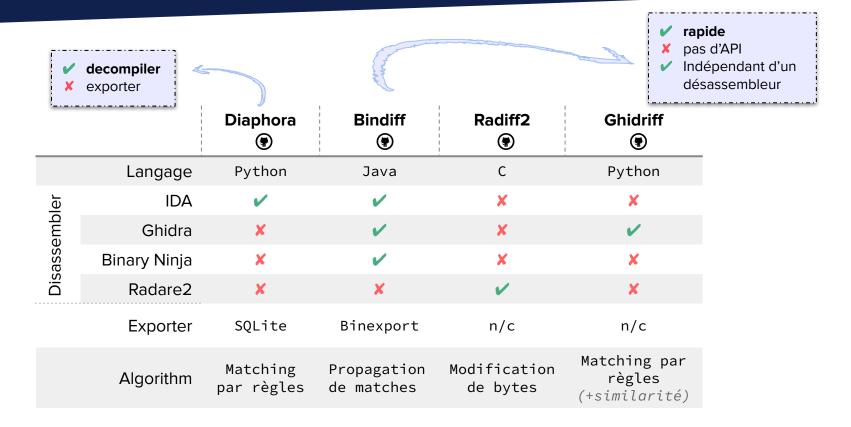

Similarité

Quelle fonction est **la plus proche** de f au sein d'un ensemble de taille k?


Matching

Quelle est la **meilleure correspondance** entre les fonctions du primary et du secondary ?

Diffing vs Similarité



Diffing = Similarité + Matching

(avec les scores de similarité, créer une correspondance...)

Similarité binaire

Diffing = similarité + matching

- 1. Utiliser des approches par similarité binaire (état de l'art ~ deep learning ~ coûteux)
- 2. Combiner les résultats avec un algorithme de matching (algorithme hongrois $\sim n^3$)

	GMN [1]	Asm2vec [2]	PalmTree [3]	jTrans [4]
Langage	Python	Python	Python	Python
Technique	GNN	word2vec	transformers	transformers

^[1] Li and al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 2019

^[2] Ding and al. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. 2019

^[3] Li and al. PalmTree: Learning an Assembly Language Model for Instruction Embedding. 2021 [4] Wang and al. JTrans: Jump-Aware Transformer for Binary Code Similarity. 2022

Évaluer un résultat de diffing

Comment comparer les paires de fonctions qui doivent être matchées (vérité-terrain) aux fonctions matchées par un differ pour deux binaires strippés ?

Vrai Positifs un match correct trouvé

Faux Positifs un faux match trouvé **Vrai Négatif**deux fonctions ne
sont pas matchées
(et c'est correct)

Faux Négatif Un match n'est pas trouvé

Précision =
$$\frac{}{}$$
 + $\frac{}{}$ Rappel = $\frac{}{}$ \Rightarrow F1-score = $2 \times \frac{P \times R}{P + R}$

Partie 2

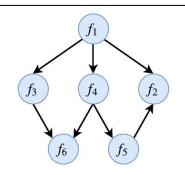
QBinDiff

QBindiff

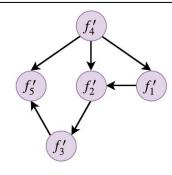
QBinDiff: Résoudre le problème d'alignement de graphe en utilisant un algorithme d'optimisation (propagation de messages) afin d'arbitrer la similarité de fonctions et la topologie du call-graph

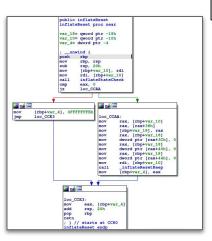
Fonctionnalités:

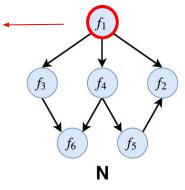
- Indépendant du désassembleur (BinExport ou Quokka)
- Utilisable en ligne de commande
- Python API (à utiliser programmatiquement)
- Deux APIs:
 - Haut-niveau pour du diffing binaire
 - Bas-niveau pour du diffing général (matrice et similarité)
- Conçu pour être **modulaire**!
- Open-source

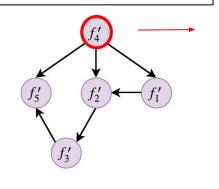


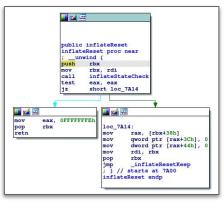
Blog ∕


A modular differ to enhance binary diffing and graph alignment, SSTIC 2024


Programme 1 (#M noeuds)


Programme 2 (#N noeuds)





Programme 1 (#M noeuds)

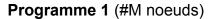
Programme 2 (#N noeuds)

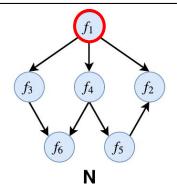
Features

(# noeuds, # arêtes, complexité cyclomatique...)

(4, 4, 2...)

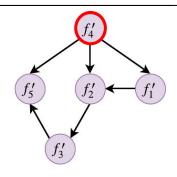
0 < Similarité < 1

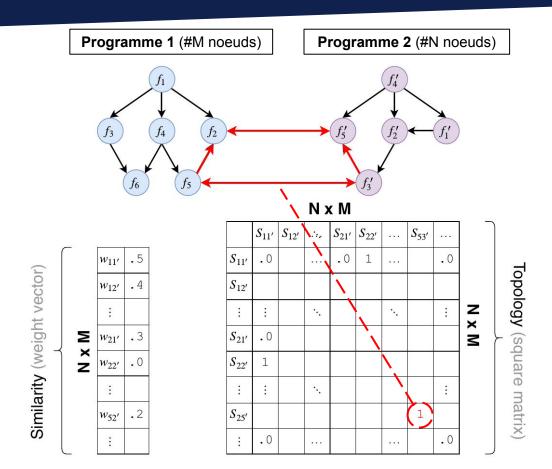



Features

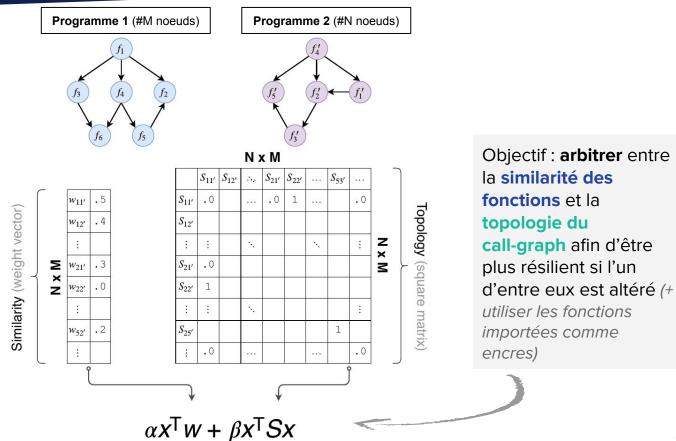
(# noeuds, # arêtes, complexité cyclomatique...)

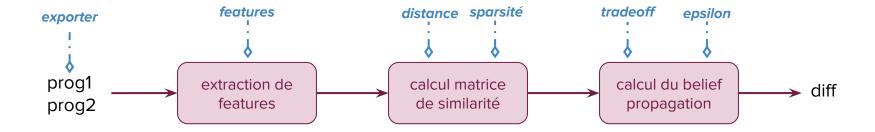
3, 2, 1...




Similarity (weight matrix)

5
0
1


Programme 2 (#N noeuds)



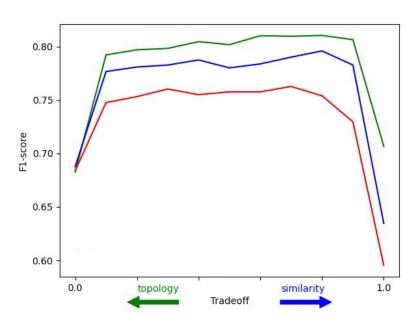
Modulaire?

Paramètres

- > **exporter:** représentation exportée du binaire (Quokka, BinExport)
- > features: 27 features utilisés pour décrire le programme (certains en commun avec diaphora / bindiff)
- distance: calculer la similarité entre features
- > sparsité: pourcentage des matchs (pertinents) à conserver dans la matrice de similarité
- > tradeoff: curseur pour arbitrer en la similarité des fonctions et la topologie du call-graph
- > epsilon: paramètre de relaxation (pour converger plus vite)

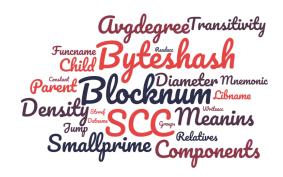
Objectif

- Utiliser la modularité de QBinDiff pour obtenir de meilleurs résultats en fonction du cas d'usage (comparé à BinDiff/Diaphora)
- > Trouver les meilleures features (pour décrire une fonction)
- > Etudier les paramètres de QBinDiff et les fine-tuner
 - distance
 - tradeoff
 - sparsité
 - o epsilon
- Trouver les meilleurs paramètres pour un projet donné (ppb)
- ➤ Etant donné un nouveau binaire, réutiliser des features et des paramètres bons en moyenne (avb)

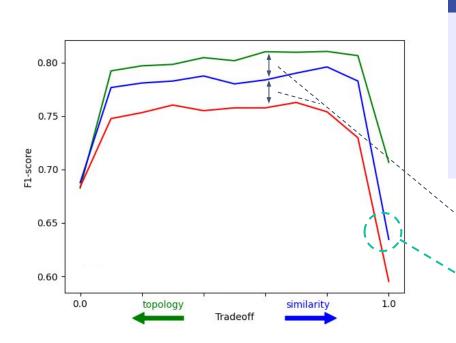

Cadre expérimental

- > Ablation réalisée sur un dataset à l'état-de-l'art [1]
- Six projets: zlib, unrar, curl, clamav, nmap, openssl
- Meilleur features pour chacun de ces projets (ppb)
- Trouver la meilleure configuration "par défaut" pour une utilisation future (avb)

Features



<u>Effet des features (f1-score) sur le binaire **zlib**</u> <u>en fonction du tradeoff</u>


Comment choisir de "bons" features ?

- ler feature set: seulement des features liés aux données (#constantes)
- 2ème feature set: features de données & CFG (# noeuds du CFG)
- 3ème feature set: features de données & CFG &
 CG (#enfants d'une fonction)

Features

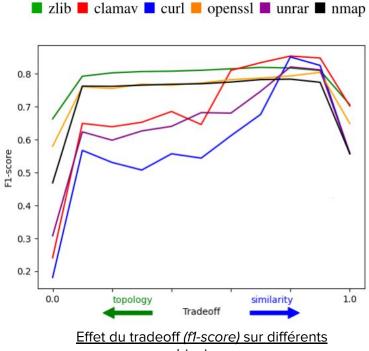
<u>Effet des features (f1-score) sur le binaire **zlib**</u> <u>en fonction du tradeoff</u>

Comment choisir de "bons" features ?

- ler feature set: seulement des features liés aux données (#constantes)
- 2ème feature set: features de données & CFG (# noeuds du CFG)
- 3ème feature set: features de données & CFG &
 CG (#enfants d'une fonction)

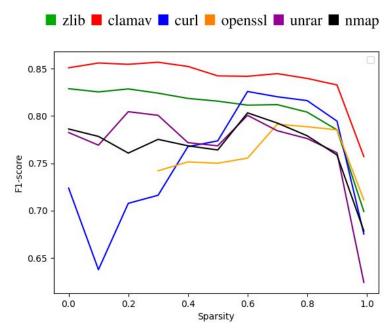
Utiliser des features de nature différente

Inclure la structure du call-graph quand le curseur ne considère que la similarité


Tradeoff

Curseur entre similarité et topologie

- > Tradeoff ~ 1 : similarité des fonctions seulement
- > Tradeoff ~ 0 : structure du call-graph seulement


- Tradeoff extrêmes (0 ou 1) à éviter
- Tradeoff > 0.6 permet de prendre en compte les fonctions complexes

binaires

Sparsité

<u>Effet de la sparsité (ffl-score) sur différents</u> <u>binaires</u>

Indice de sparsité

- > Sparsité ~ 1 : seuls les matchs avec une très forte similarité seront conservés (restrictifs)
- Sparsité = 0 : tous les matchs candidats sont conservés

- Sur les petits programmes, une sparsité élevée décroît légèrement les performances
- Sur les larges programmes, une sparsité élevée donne de meilleures résultats grâce à une convergence plus rapide

Sparsité

- Augmenter la sparsité diminue le coût mémoire et le temps d'exécution
- Très avantageux sur les programmes assez lourds (performances de diffing & temps/RAM)

		cla	mav	nn	nap	ope	enssl
		Time	RAM	Time	RAM	Time	RAM
BinDiff		110	298	69	834	56	388
Diaphora3		151	29	651	30	265	30
	s = 0	672	823	8675	8339	-	-
	s = 0.1	689	801	8702	8329	-	-
	s = 0.2	684	712	7424	7167	-	-
	s = 0.3	639	617	6712	6171	3844	4884
	s = 0.4	656	523	4933	5071	3784	4022
QBinDiff	s = 0.5	541	430	4549	3902	2279	3121
	s = 0.6	516	347	3146	2900	1509	2301
	s = 0.7	489	272	2188	2009	1060	1569
	s = 0.8	461	204	1725	1294	1135	999
	s = 0.9	447	153	1205	762	528	535
	s = 0.99	440	134	880	673	398	408

Effet de la sparsité (f1-score) en terme de temps de calcul / coût mémore

Synthèse de l'ablation

Paramètres

- > features: utiliser des features liés aux données, au CFG et au CG
- > distance: Canberra ou Haussmann
- > tradeoff: > 0.6, à tuner en fonction du bruit dans le binaire (obfuscation)
- indice de sparsité: le choisir grand pour de larges projets
- **> epsilon**: > 0.8
- Meilleure combinaison spécifique à chaque projet (ppb) ou en moyenne (avb)

Exemple

Ligne de commande

```
$ qbindiff primary.BinExport \
          secondary.BinExport \
          -ff bindiff -o result.BinDiff \ # output in bindiff format
          -a1 CS ARCH ARM:CS MODE THUMB \ # with .BinExport better to
          -a2 CS ARCH ARM:CS MODE THUMB # specify arch in capstone
File loading
Matching
Saving Results
                         206.0000
 Similarity
                         108.0000
 Squares
 Nb matches
 Node cover
              100.000% / 100.000%
 Edge cover
```

API

```
from qbindiff import QBinDiff, Program
from qbindiff.features import CyclomaticComplexity # etc
p1 = Program("primary.BinExport")
p2 = Program("secondary.BinExport")
differ = QBinDiff(p1, p2)
differ.register feature extractor(CyclomaticComplexity, 1.0)
# register your features
differ.process()
mapping = differ.compute matching()
# do anything you want if the result
```

Partie 3

Benchmarks

		BinDiff	Diaphora3	QBinDiff-ppb (BinExport)	QBinDiff-ppb (Quokka)	QBinDiff-avb (BinExport)	QBinDiff-avb (Quokka)	GMN	Asm2vec	PalmTree	JTrans
zlib	libz.so.1.2.11	0.85	0.65	0.84	0.89	0.82	0.88	0.71	0.19	0.67	0.69
1	libssl.so.3	0.81	0.64	0.85	0.85	0.83	0.86	0.56	0.17	0.63	0.67
openssl	openssl	0.95	0.68	0.96	0.98	0.92	0.98	0.59	0.54	0.76	0.72
	liberypto.so.3	0.76	0.78	0.63	0.80	0.67	0.82	0.58	0.01	0.55	0.46
	nping	0.59	0.52	0.74	0.77	0.73	0.77	0.17	0.17	0.41	0.52
nmap	ncat	0.73	0.58	0.86	0.92	0.86	0.92	0.24	0.17	0.56	0.67
	nmap	0.8	0.8	0.73	0.82	0.73	0.82	0.66	0.10	0.61	0.43
clamav	libclamav	0.58	0.46	0.77	0.81	0.76	0.81	0.43	0.10	0.51	0.53
curl		0.65	0.56	0.83	0.88	0.83	0.88	0.24	0.22	0.50	0.57
unrar		0.68	0.62	0.82	0.88	0.81	0.87	0.22	0.14	0.57	0.69
Averaged		0.74	0.63	0.80	0.86	0.80	0.86	0.44	0.18	0.58	0.60

F1-score en fonction des differs & des projets

		BinDiff	Diaphora3	QBinDiff-ppb (BinExport)	QBinDiff-ppb (Quokka)	QBinDiff-avb (BinExport)	QBinDiff-avb (Quokka)	GMN	Asm2vec	PalmTree	JTrans
zlib	libz.so.1.2.11	0.85	0.65	0.84	0.89	0.82	0.88	0.71	0.19	0.67	0.69
openssl	libssl.so.3 openssl libcrypto.so.3	0.81 0.95 0.76	0.64 0.68 0.78	0.85 0.96 0.63	0.85 0.98 0.80	0.83 0.92 0.67	0.86 0.98 0.82	0.56 0.59 0.58	0.17 0.54 0.01	0.63 0.76 0.55	0.67 0.72 0.46
nmap	nping ncat nmap	0.59 0.73 0.8	0.52 0.58 0.8	0.74 0.86 0.73	0.77 0.92 0.82	0.73 0.86 0.73	0.77 0.92 0.82	0.17 0.24 0.66	0.17 0.17 0.10	0.41 0.56 0.61	0.52 0.67 0.43
clamav	libelamav	0.58	0.46	0.77	0.81	0.76	0.81	0.43	0.10	0.51	0.53
curl		0.65	0.56	0.83	0.88	0.83	0.88	0.24	0.22	0.50	0.57
unrar		0.68	0.62	0.82	0.88	0.81	0.87	0.22	0.14	0.57	0.69
Averaged		0.74	0.63	0.80	0.86	0.80	0.86	0.44	0.18	0.58	0.60

F1-score en fonction des differs & des projets

Utiliser Quokka permet d'obtenir de meilleurs résultats (meilleur export)

		BinDiff	Diaphora3	QBinDiff-ppb (BinExport)	QBinDiff-ppb (Quokka)	QBinDiff-avb (BinExport)	QBinDiff-avb (Quokka)	GMN	Asm2vec	PalmTree	JTrans
zlib	libz.so.1.2.11	0.85	0.65	0.84	0.89	0.82	0.88	0.71	0.19	0.67	0.69
	libssl.so.3	0.81	0.64	0.85	0.85	0.83	0.86	0.56	0.17	0.63	0.67
	openssl	0.95	0.68	0.96	0.98	0.92	0.98	0.59	0.54	0.76	0.72
	liberypto.so.3	0.76	0.78	0.63	0.80	0.67	0.82	0.58	0.01	0.55	0.46
	nping	0.59	0.52	0.74	0.77	0.73	0.77	0.17	0.17	0.41	0.52
nmap	ncat	0.73	0.58	0.86	0.92	0.86	0.92	0.24	0.17	0.56	0.67
•	nmap	0.8	0.8	0.73	0.82	0.73	0.82	0.66	0.10	0.61	0.43
clamav	libclamav	0.58	0.46	0.77	0.81	0.76	0.81	0.43	0.10	0.51	0.53
curl		0.65	0.56	0.83	0.88	0.83	0.88	0.24	0.22	0.50	0.57
unrar		0.68	0.62	0.82	0.88	0.81	0.87	0.22	0.14	0.57	0.69
Averaged		0.74	0.63	0.80	0.86	0.80	0.86	0.44	0.18	0.58	0.60

F1-score en fonction des differs & des projets

La similarité binaire (avec matching) n'arrive pas à concurrencer des differs standard beaucoup plus simples

		BinDiff	Diaphora3	QBinDiff-ppb (BinExport)	QBinDiff-ppb (Quokka)	QBinDiff-avb (BinExport)	QBinDiff-avb (Quokka)	GMN	Asm2vec	PalmTree	JTrans
zlib	libz.so.1.2.11	0.85	0.65	0.84	0.89	0.82	0.88	0.71	0.19	0.67	0.69
and the	libssl.so.3	0.81	0.64	0.85	0.85	0.83	0.86	0.56	0.17	0.63	0.67
openssl	openssl	0.95	0.68	0.96	0.98	0.92	0.98	0.59	0.54	0.76	0.72
lii	liberypto.so.3	0.76	0.78	0.63	0.80	0.67	0.82	0.58	0.01	0.55	0.46
	nping	0.59	0.52	0.74	0.77	0.73	0.77	0.17	0.17	0.41	0.52
nmap	ncat	0.73	0.58	0.86	0.92	0.86	0.92	0.24	0.17	0.56	0.67
•	nmap	0.8	0.8	0.73	0.82	0.73	0.82	0.66	0.10	0.61	0.43
clamav	libclamav	0.58	0.46	0.77	0.81	0.76	0.81	0.43	0.10	0.51	0.53
curl		0.65	0.56	0.83	0.88	0.83	0.88	0.24	0.22	0.50	0.57
unrar		0.68	0.62	0.82	0.88	0.81	0.87	0.22	0.14	0.57	0.69
Averaged		0.74	0.63	0.80	0.86	0.80	0.86	0.44	0.18	0.58	0.60

F1-score en fonction des differs & des projets

Parmi les differs,
QBinDiff (peu importe
l'exporter) donne les
meilleures performances

		BinDiff	Diaphora3	QBinDiff-ppb (BinExport)	QBinDiff-ppb (Quokka)	QBinDiff-avb (BinExport)	QBinDiff-avb (Quokka)	GMN	Asm2vec	PalmTree	JTrans
zlib	libz.so.1.2.11	0.85	0.65	0.84	0.89	0.82	0.88	0.71	0.19	0.67	0.69
openssl	libssl.so.3 openssl libcrypto.so.3	0.81 0.95 0.76	0.64 0.68 0.78	0.85 0.96 0.63	0.85 0.98 0.80	0.83 0.92 0.67	0.86 0.98 0.82	0.56 0.59 0.58	0.17 0.54 0.01	0.63 0.76 0.55	0.67 0.72 0.46
nmap	nping ncat nmap	0.59 0.73 0.8	0.52 0.58 0.8	0.74 0.86 0.73	0.77 0.92 0.82	0.73 0.86 0.73	0.77 0.92 0.82	0.17 0.24 0.66	0.17 0.17 0.10	0.41 0.56 0.61	0.52 0.67 0.43
clamav	libclamav	0.58	0.46	0.77	0.81	0.76	0.81	0.43	0.10	0.51	0.53
curl		0.65	0.56	0.83	0.88	0.83	0.88	0.24	0.22	0.50	0.57
unrar		0.68	0.62	0.82	0.88	0.81	0.87	0.22	0.14	0.57	0.69
Averaged		0.74	0.63	0.80	0.86	0.80	0.86	0.44	0.18	0.58	0.60

F1-score en fonction des differs & des projets

Peu de différence entre ppb et avb : on peut donc réutiliser les paramètres généraux et garantir de bons résultats

Conclusion

Takeaways

- QBinDiff dépasse les autres differs (en modulant les paramètres)
- Etude ablation : paramètres robustes, utilisables pour de nouveaux binaires
- Benchmark: comparaison entre differs standards et outils de similarité
- Similarité: l'efficacité de ces approches adaptées au diffing reste limitée (entraînement coûteux, fonction seulement)

⇒ Quarkslab utilise QbinDiff pour des malware obscurcis (APT & co..)

https://github.com/quarkslab/qbindiff/

https://diffing.quarkslab.com/

Portail: diffing

Thank you

Contact information:

Email:

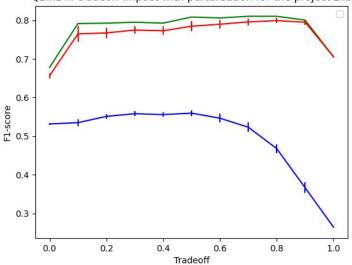
contact@quarkslab.com

Phone:

+33 1 58 30 81 51

Website:

quarkslab.com


@quarkslab

Tradeoff

■ standard ■ disturbed similarity matrix ■ modified adjacency matrices.

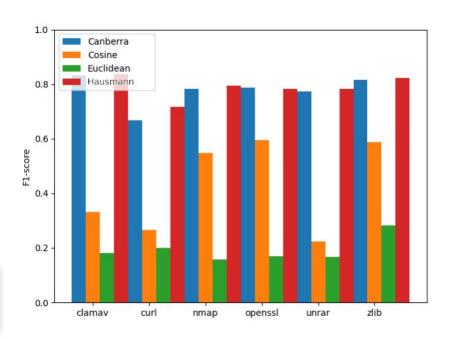
QBinDiff tradeoff impact with perturbation for the project zlib

<u>Conséquence du bruit en fonction du tradeoff</u> <u>(f1-score) sur le binaire **zlib**</u>

Curseur entre similarité et topologie

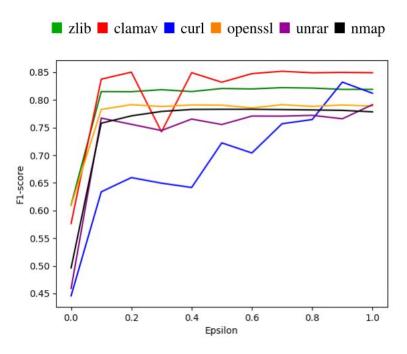
- Tradeoff ~ 1 : similarité des fonctions seulement
- > Tradeoff ~ 0: structure du call-graph seulement

- Structure bruitée (MH) & tradeoff = 0 : performances dégradées
- > Similarité bruitée (bruit uniforme) & tradeoff > 0.5 : performances dégradées
- Tradeoff = 0 ou tradeoff = 1 : manque d'informations sur le programme


Distance

A quoi sert la distance?

- Sert à mesurer la similarité entre différents features de fonctions
- ➤ Haussmann: Quarkslab new distance, combining Canberra and Jaccard-index


⇒ Les distances **Canberra** et **Haussmann** donnent les meilleurs résultats.

Effet de la distance (f1-score) sur différents binaires

Epsilon

⇒ Epsilon aide à converger plus vite donc choisir une valeur > 0.8.

Effet d'epsilon (f1-score) sur différents binaires