
R E S E A R C H Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​​/​c​r​e​a​​t​i​v​e​c​o​​m​m​o​n​​s​.​o​r​g​​/​l​i​c​e​​n​s​
e​s​/​b​​y​-​n​c​​-​n​d​/​4​.​0​/.

Cohen et al. Applied Network Science (2025) 10:49
https://doi.org/10.1007/s41109-025-00733-8

*Correspondence:
Roxane Cohen
roxane.cohen@dauphine.eu
Robin David
rdavid@quarkslab.com
Florian Yger
florian.yger@insa-rouen.fr
Fabrice Rossi
rossi@ceremade.dauphine.fr
1Quarkslab, Paris, France
2LAMSADE, CNRS, Université Paris-
Dauphine - PSL, Paris, France
3LITIS, INSA Rouen Normandy,
Rouen, France
4CEREMADE, CNRS, Université Paris-
Dauphine - PSL, Paris, France

Identifying obfuscated code through graph-
based semantic analysis of binary code
Roxane Cohen1,2*, Robin David1*, Florian Yger3* and Fabrice Rossi4*

Introduction
Binary programs and their sensitive contents are often protected from reverse engineer-
ing through obfuscation techniques (Nagra and Collberg 2009), which aim to obscure
a program’s underlying logic without altering its functionality. While reverse engineers
seek to comprehensively understand program semantics (Raja and Fernandes 2007),
developers try to conceal them, at least partially. Their motivations range from legiti-
mate concerns like intellectual property protection to less ethical practices such as hid-
ing malicious payloads (Sharif et al. 2008). Consequently, detecting obfuscated programs
is useful for program protection assessment and malware detection complementing, for
instance, traditional signature-based methods. ML (Machine Learning) approaches have
emerged as effective tools for this detection task (Greco et al. 2023).

In this paper, we focus on obfuscation detection at the function level, with the aim of
identifying both obfuscated functions and the specific obfuscation techniques employed.
Our objective is to pinpoint obfuscated functions within a binary. First, as obfuscation

Applied Network Science

Abstract
Protecting sensitive program content is a critical concern in various situations,
ranging from legitimate use cases to unethical contexts. Obfuscation is one of the
most used techniques to ensure such a protection. Consequently, attackers must first
detect and characterize obfuscation before launching any attack against it. This paper
investigates the problem of function-level obfuscation detection using graph-based
approaches, comparing algorithms, from classical baselines to advanced techniques
like Graph Neural Networks (GNN), on different feature choices. We consider
various obfuscation types and obfuscators, resulting in two complex datasets. Our
findings demonstrate that GNNs need meaningful features that capture aspects
of function semantics to outperform baselines. Our approach shows satisfactory
results, especially in a challenging 11-class classification task and in two practical
binary analysis examples. It highlights how much obfuscation and optimization are
intertwined in binary code and that a better comprehension of these two principles
are fundamental in order to obtain better detection results.

Keywords  Obfuscation, Classification, GNN, Graphs, Graph representation learning,
Security, Optimization

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s41109-025-00733-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-025-00733-8&domain=pdf&date_stamp=2025-9-19

Page 2 of 24Cohen et al. Applied Network Science (2025) 10:49

negatively impacts program efficiency, developers tend to only obfuscate important
functions, which ultimately are the ones of interest for an analyst. Second, automated
attacks have been developed against specific obfuscation schemes, assuming the obfus-
cation is already detected and located (David et al. 2020; Yadegari et al. 2015; Bardin
et al. 2017; Salwan et al. 2018; Tofighi-Shirazi et al. 2019). By detecting functions obfus-
cated with these schemes, analysts can effectively employ the corresponding attacks.
Finally, it provides an evaluation of how stealthy an obfuscation is, which is crucial for
developers, as automated detection tools can provide a measure of the undetectability of
obfuscation methods at a fine-grained level (Kanzaki et al. 2015).

In this paper, we compare function-level C code obfuscation detection and classifica-
tion methods based on advanced features, including structural features extracted from
the CFG (Control Flow Graph), processed by classical ML algorithms (Random Forest
and Gradient Boosting), to methods based on GNNs that directly process attributed
CFGs. We extend the previous GNN approach (Jiang et al. 2021) by comparing different
collections of features, including graph-level ones, and exploring various GNNs archi-
tectures. We investigate more advanced obfuscation techniques than those provided
by OLLVM (Junod et al. 2015) by incorporating Tigress (Collberg 2023) in our experi-
ments. We use a larger dataset and investigate two data splits to control the classification
difficulty.

Our experiments demonstrate that obfuscation detection and characterization are effi-
cient with classical baselines and features describing the distribution of mnemonic inside
a function. More importantly, the best scores are achieved through a GNN processing
of fine-grained semantic level features. These results are considerably modified in some
cases, especially when the initial functions are optimized, highlighting the importance of
a better comprehension between obfuscation and optimization.

The remainder of this paper is organized as follows. Section “Binary representation
and obfuscation” introduces the concepts used throughout this paper, the obfuscation
techniques considered in this study and briefly discusses their impact on CFG. Sec-
tion “Machine learning for grap” reviews fundamental concepts related to graph learn-
ing. Section “Related papers” provides a description of the works related to our study.
Section “Experimental settings” describes our experiments technical details. Section
“Binary classification” presents the initial task of binary classification, followed by the
extended multi-class experiment in Section “Multi-class classification”. Section “Opti-
mization against obfuscation” details how optimization may alter an initial obfuscation
and its impact on the general detection and characterization tasks. Section “Real-world
examples” shows two real-world examples dedicated to obfuscation detection. A discus-
sion in Section “Conclusion” concludes this study.

Binary representation and obfuscation
Binary code is often described by its corresponding disassembly, a symbolic represen-
tation of the machine code. At the function level, this disassembly is naturally repre-
sented with an attributed CFG that details the function execution flow between blocks
of code, denoted as BB (Basic Block). A BB contains a sequence of assembly instructions
without any branching, meaning that the block will be executed from its beginning until
its end. Each instruction, e.g. mov eax, 0 in x86-64, combines a mnemonic (the action
to operate, here mov) and operands (the arguments of this action, here eax, 0). Such a

Page 3 of 24Cohen et al. Applied Network Science (2025) 10:49

representation is particularly useful as semantic information can be extracted from it,
describing the function behavior.

This disassembly is, however, architecture-dependent. Indeed, one source code, for
which an example is displayed in Fig. 1a, can be compiled to a specific architecture,
which defines how a CPU executes instructions. These architectures have different
instruction sets and registers. For example, the x86 and x86-64, denoted x64, architec-
tures1 use a specific set of branching mnemonics, like jz, jnz, je, jne, ja, jne, etc. whereas
the Arm architecture2 uses instead b, bl, bx. As a consequence, using an architecture-
dependent disassembly to build a graph representation lacks of generalization, as the
same source code, compiled with different architectures, as shown in Fig. 1b, c, will
end up with completely dissimilar CFG. Consequently, one may want to use a unified
graph representation, valid for any compiled code source, regardless of its architecture.
Pcode (Borgerson 2024) is the IR (Intermediary Representation) behind the Ghidra
disassembler,3 used to obtain a higher-level abstraction compared to machine code. Each
assembly instruction is semantically represented by one or more Pcode instructions in
an architecture agnostic way, like in Fig. 1d. Consequently, all the CPU architectures
(ARM, Aarch64, MIPS) share the same underlying language. Figure 1 illustrates the link
between source code, architecture-dependent code and IR.

Apart from the assembly language or the underlying Pcode IR, binary code is
extremely sensitive to compilation parameters, such as the optimization level. In fact,
the more optimized the code is, the faster it will execute, and the more its assembly will

1 https://www​.intel.com/​content/www​/us/en/d​eveloper/articles/technical/intel-sdm.html.
2 https://developer.arm.com/documentation.
3 https://ghidra-sre.org/

Fig. 1  An original source code, the resulting binary code compiled for x64 and Arm and their common underlying
Pcode instructions

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation
https://ghidra-sre.org

Page 4 of 24Cohen et al. Applied Network Science (2025) 10:49

differ from non-optimized assembly code. Thus, entire BBs may disappear, sometimes
even entire functions. However, the optimization preserves the program semantics and
that a given function, optimized differently, will exhibit multiple CFGs representations
that all convey the same underlying semantics. Conversely, two different functions may
share the same CFG structure but differ on the instructions in their BBs.

A different source of variability is induced by program obfuscation. It aims at altering a
program syntax but not its behavior. It consists of specific transformation passes that try
to increase code security against reverse engineering. Obfuscation is widely used to pro-
tect binary assets, such as data, keys or algorithms. Each obfuscation pass has specific
effects on binaries (Nagra and Collberg 2009):

 	• A data-related obfuscation consists in modifying the function data-flow. For
example, a MBA (Mixed Boolean Arithmetic) (Zhou et al. 2007) replaces integer
values with a sequence of complex arithmetic computations that is strictly equivalent.

 	• A control-flow obfuscation modifies the true program execution flow, either at the
function level or at the program level. One elementary obfuscation among this type
is the CFF (CFG Flattening), that, inside the function, puts every BB at the same level
and uses a dispatcher to preserve the execution flow logic (Wang 2001).

Figure 2 and Table 1 illustrate the high variability of binary code, depending on the
compilation effect or obfuscation. Intuitively, detecting a pass that has a subtle effect on
binary code, such as MBA, is tedious. The resulting function may be confused with a
legitimate complex one with dozens of arithmetic operations.

Machine learning for graphs
Since graphs naturally represent functions execution flow, graph learning is adapted
to our task and particularly graph vector representations. Graph representation learn-
ing aims at encoding graph data into a low-dimensional vector. There exist two main

Table 1  Optimization and obfuscation effects on the gzerror function CFG
O0 optimization O2 optimization Obfuscated with CFF

Fig. 2  gzerror function source code (zlib project)

Page 5 of 24Cohen et al. Applied Network Science (2025) 10:49

classes of algorithms for this task: feature-based approaches and GNN (Graph Neural
Networks). Feature-based approaches consist in using various expertly designed features
to describe a graph, that are then often processed by traditional ML algorithms, such as
Random Forest, for classification purpose (Errica et al. 2020). Standard features are the
number of nodes and edges, the mean node degree, the density, etc.

GNNs have experienced recent popularity, despite having been theorized quite early
(Gori et al. 2005). GNNs use graph structure and initial features assigned to the graph
nodes to iteratively learn either node or graph representations, with a message passing
mechanism. Each node v is associated to an initial feature Xv , that will be further refined
depending on its node neighbors, denoted N (v), in the graph structure in order to
account for neighbor representation. A schema of a general GNN model (Wu et al. 2021)
is displayed in Fig. 3. Given a graph and a feature matrix, where each entry describes a
node by a feature, a GNN model stacks multiple message-passing or convolution layers.
At each layer, node representations are iteratively refined by incorporating information
from the node itself and its neighbors, with each node potentially having an arbitrary
degree. This process propagates node data further inside the graph, the model depth
deciding how far an initial node feature can be spread into the graph. Between each mes-
sage-passing layer, it is possible to use a pooling layer that reduces the graph order by
extracting features for sub-graphs. At the end, each node is associated to an embedding,
which is a learned vector representation of the node that both captures the structural
role of it and its semantic properties.

Formally, the k-th message-passing layer of a GNN is described as follows Xu et al.
(2019):

a(k)
v = AGGREGATE(k)

(
{h(k−1)

u : u ∈ N (v)}
)

h(k)
v = COMBINE(k)

(
h(k−1)

v , a(k)
v

)

where h(k)
v is the feature associated to the node v at the k-th iteration, h(0)

v = Xv is the
initial feature of node v and N (v) denotes the neighborhood of node v. In this work,
edge features are not included in the GNN design as CFG do not provide any.

After K steps of node embedding refinement, final node representations can be
directly used for node-level tasks. For graph-level tasks, a graph embedding of the graph
G can be derived using a readout function that will combine all the node representations
into a final graph vector:

hG = READOUT ({h(K)
v |v ∈ G})

Fig. 3  GNN framework (Wu et al. 2021)

Page 6 of 24Cohen et al. Applied Network Science (2025) 10:49

The AGGREGATE, COMBINE and the optional READOUT functions vary depending
on the message passing GNN model that is used. GCN (Graph Convolutional Network)
(Kipf and Welling 2017) was the first applicable GNN using convolutional layers. SAGE
(Hamilton et al. 2017) is a refined GCN version, with a more advanced COMBINE
method. GIN is a model architecture that offers the best theoretical foundations as it
has been shown to be as powerful as the 1-Weisfeiler-Lehman test (Xu et al. 2019). GAT
includes an attention mechanism in the message passing framework, that should give
more weight to important nodes (Velčković et al. 2018). UNet is inspired from the usual
UNet architecture for computer vision, where the dimension of the input data is first
downsampled and then expanded again (Gao and Ji 2019).

As mentioned before, GNNs take as input a graph with n nodes and a feature matrix of
dimension (n, d) with d, the feature dimension. This node feature matrix should ideally
describe semantically the content or the nature of graph nodes. Contrarily to feature-
based approaches, GNNs use node-level features. They are known to have a huge impact
during the GNN training (Errica et al. 2020).

Beyond the GNN popularity, one must remember that simple baselines should always
be used as a comparison. Previous works highlight the fact GNNs do not always pro-
vide the best results compared to baselines that are less costly (Errica et al. 2020; Fer-
rari Dacrema et al. 2019).

Related papers
The problem of detecting and characterizing an obfuscation is related to the stealth
property of the obfuscation (Nagra and Collberg 2009). This problem has been studied
from a heuristic and ML perspectives in several previous works.

Heuristic-based approaches either aim to detect if a code portion is obfuscated (Bla-
zytko 2021a, 2023) or how (Blazytko 2021b). They often rely on a prior knowledge about
the obfuscation and use assembly statistical analysis or graph properties, such as domi-
nance relationships. These techniques do not use any learning process.

Most ML approaches extract various features from binary programs, such as the dis-
tribution of instructions in the assembly code (Salem and Banescu 2016), the function
complexity metrics (Schrittwieser et al. 2023) or semantic reasoning (Tofighi-Shirazi
et al. 2019). Some of the more advanced features are derived from a graph-based repre-
sentation of the binary functions, such as the CFG-based cyclomatic complexity. These
features are then used with standard machine-learning algorithms such as Decision
Trees, Random Forests or Gradient Boosting. In particular, a focus is made on explain-
ability (Greco et al. 2023) for obfuscation applied at the program level.

While extracting domain-specific features from the CFG has been proved to be effec-
tive in some cases (Greco et al. 2023), leveraging the full structural information of
the graph can enhance classification performance in certain applications. This can be
achieved using kernel methods (Kriege et al. 2020) or GNN (Graph Neural Networks).
GNNs are under very active development since their introduction (Gori et al. 2005) and
have shown promise in outperforming feature-based approaches in specific scenarios
(Errica et al. 2020).

More recent works try to adapt GNN to this problem. In particular, function-level
obfuscation detection and classification were investigated using a GCN and a LSTM
(Long Short-Term Memory) neural network applied on the resulting graph embedding

Page 7 of 24Cohen et al. Applied Network Science (2025) 10:49

(Jiang et al. 2021). This approach outperformed baseline methods based on manually
extracted features. However, these features were limited to the BB level and combined
using a simple sum, lacking structural features that could be derived from the CFG.
Besides, applying a LSTM on a graph embedding seems to lack of a stable theoretical
background. We extend this work by studying multiple GNN models and exploring dif-
ferent types of features than only classes of mnemonics.

Compared to all of these papers, we evaluate novel feature types, such as Pcode, and
new graph types. The impact of the optimization on the obfuscation is particularly con-
sidered as it is often not taken in consideration in existing research.

Experimental settings
Detecting and characterizing obfuscations using graph-based ML requires a large data-
set containing various types of obfuscations. Section “Dataset” details how two datas-
ets were created for these purposes. From these datasets, different types of graphs are
extracted, explained in Section “Graph types”, on which different models are trained,
described in Section “Models and features”.

Dataset

In order to study obfuscation, we have built an open-source dataset (Quarkslab 2024)
that consists of C program sources obfuscated by two different obfuscators and with dif-
ferent obfuscation types (control-flow and data obfuscations). The dataset is based on
five open source projects: zlib, lz4, minilua, sqlite and freetype, compiled for x64, that
are obfuscated with Tigress [13], a source-to-source obfuscator, and OLLVM (Junod
et al. 2015), that directly interfaces with the compiler. Several Tigress obfuscations are
selected:

 	• Data obfuscations: EncodeArithmetic, EncodeLiterals;
 	• Control-flow obfuscations: Virtualize, OpaquePredicates, CFF, Split, Merge, Copy;
 	• Combined: a mix of CFF, EncodeArithmetic and OpaquePredicates, and the same

mix with an additional Split.

OLLVM unfortunately offers less obfuscations: only OpaquePredicates, CFF and a pass
similar to EncodeArithmetic.

These five projects are selected due to Tigress−3.1 limitations. Specifically, it can only
be applied to C projects contained within a single source file, as the provided merging
tool does not function reliably on realistic projects. In practice, most prior research relies
on toy examples, and finding realistic projects fullfilling the aformentioned constraint
remains challenging. Projects from diverse application domains were carefully sought to
satisfy this constraint. As a result, zlib, lz4, minilua, sqlite and freetype were identified as
the only publicly realistic available projects meeting these criteria. The dataset creation
has been documented in previous work (Cohen et al. 2025).

Data leakage can be a serious issue when building such a dataset. A particular risk is
functions shared by different projects. To avoid any leakage, we use two data split strate-
gies to produce a training set, a validation set and a test set.

In the per function split strategy (Dataset-1), a function and its obfuscated versions
are within the same set. To implement this strategy, all the functions of the five proj-
ects are collected, ensuring the common functions between projects, such as the libc

Page 8 of 24Cohen et al. Applied Network Science (2025) 10:49

functions, are completely removed. The resulting function list is randomly split into
three sets: train, validation and test with a ratio of (64%, 16%, 20%), using stratified sam-
pling to ensure a similar distribution of BB number across sets. For each function in a
subset, we include both the obfuscated and unobfuscated versions. Notice that this leads
to an unbalanced class ratio, as the original dataset contains 11 obfuscation classes for
only one unobfuscated class. This class unbalance ratio is unusual in a context of anom-
aly detection, as in general there exist much more normal data than abnormal ones.
Unlike standard anomaly detection settings, where anomalous data is sparse compared
to normal behavior, our experimental setup allows us to obtain abnormal data without
difficulty. However, in real-world scenarios, obfuscated functions (abnormal data) are
often limited inside a binary for computational reasons.

In the per binary split strategy (Dataset-2), we use all the functions belonging to zlib,
lz4 and minilua, and all their obfuscated versions to create the train and validation sets.
These two sets are split according to the same procedure used to generate the Data-
set-1, with a ratio of (80%, 20%). The test set is made of all the functions of sqlite and
freetype, with all their obfuscated versions. This setting represents a real-world scenario
for detecting obfuscation: we want to detect and characterize obfuscated functions in a
completely new executable using a model trained on controlled binaries that are poten-
tially unrelated to the new one.

Dataset-2 should be more challenging than Dataset-1 as two projects may have a
different coding style or may use a vastly different number of functions that are valid
candidates for certain types of obfuscation. Having different projects during training/
validation and testing prevents the model from leveraging per project regularity.

For these two datasets, -O0 and -O2 binaries are separated. Indeed, compiler opti-
mizations tend to remove, sometimes completely, the applied obfuscation. This is par-
ticularly true for the OLLVM obfuscator, leading to many obfuscated variants that are
identical to non-obfuscated versions. The dataset descriptions, especially the number
of functions and samples, the class ratio and various graph characteristics, are available
in Table 2. It illustrates the variability between the Dataset-1 and Dataset-2, the -O0
and -O2 optimizations and the two types of graphs considered in this work and detailed
in Section Graph Types. Some features, in particular the graph order and size, and the
average node degree are features that impact most graph learning algorithms, especially
GNN (Xu et al. 2019).

Quantifying precisely to what extent each aspect of the obfuscation detection problem
contributes to the final classification score is essential. We explore different graph types
and various features that are potential candidates to be used for further classification:
textual data from assembly text, statistical data, etc. In this work, graph representation
and features are gradually enriched, starting from existing ML works, before diving into
more advanced GNN algorithms.

All our experiments were conducted on a Linux-based server equipped of Nvidia RTX
A6000, with 20 cores, 40 threads and 64 GiB of CPU RAM and 48 GiB of GPU RAM.

Graph types

In this study, two types of graphs are considered:

 	• CFG, where nodes represent BBs and edges denote the execution flow between
these nodes inside the function. This graph is attributed and each node contains its

Page 9 of 24Cohen et al. Applied Network Science (2025) 10:49

associated assembly code, namely a sequence of architecture-specific instructions,
where an instruction is composed from a mnemonic and several operands. Such a
graph representation is the one that is mostly used by current disassemblers, such as
IDA-Pro4 or Ghidra.5

 	• CFG-IR. This graph is based on the elementary CFG, except it uses the Pcode
representation instead of the raw assembly code. Each assembly instruction is
equivalent to a list of more abstract Pcode instructions. Then, it is possible to create
a CFG-IR, where each node corresponds to a Pcode block of code, linked by Pcode
execution flow. This CFG-IR differs from the standard CFG as several assembly

4 https://hex-rays.com/ida-pro.
5 https://ghidra-sre.org/

Table 2  Characteristics of the two datasets depending on the graph type and the optimization
level

-O0 optimization -O2 optimization
Train* 3,225 / 48,813 1,846 / 23,151
Validation* 803 / 12,135 459 / 5,753
Test* 1012 / 15,403 583 / 7,162
Ratio binary (0.11, 0.11, 0.11) (0.17, 0.17, 0.17)

CFG CFG-IR CFG CFG-IR
Dataset-1 Min graph order 1 – 1 2

Max graph order 5,344 – 1,432 2,761
Mean graph order 15.6 – 17.54 36,54
Median graph order 7 – 10 21
Mean graph density 0.116 – 0.132 0.118
Min graph size 0 – 0 1
Max graph size 7,122 – 2,396 3,725
Mean graph size 21.64 – 26.57 45.45
Median graph size 8 – 13 24
Min average node degree 0 – 0 1
Max average node degree 3.93 – 4.44 3.31
Mean average node degree 1.84 – 2.28 2.16
Median average node degree 2.4 – 2.67 2.31
Train* 1,137 / 18,759 610 / 9,019
Validation* 279 / 4,652 150 / 2,238
Test* 3,948 / 57,627 3012 / 31,760
Ratio binary (0.13, 0.13, 0.11) (0.14, 0.14, 0.17)

CFG CFG-IR CFG CFG-IR
Dataset-2 Min graph order 1 – 1 2

Max graph order 9454 – 9,829 23,305
Mean graph order 22.48 – 25.81 54
Median graph order 7 – 10 22
Mean graph density 0.112 - 0.127 0.117
Min graph size 0 – 0 1
Max graph size 12,764 – 15,620 28,944
Mean graph size 31.73 – 40,35 68.35
Median graph size 9 – 14 25
Min average node degree 0 - 0 1
Max average node degree 3.95 - 4.85 3.48
Mean average node degree 1.89 - 2.31 2.17
Median average node degree 2 - 2.67 2.33

The symbol “-” indicates that computing the corresponding graph is unaffordable given given our current means

*Values expressed in functions/samples

https://hex-rays.com/ida-pro
https://ghidra-sre.org

Page 10 of 24Cohen et al. Applied Network Science (2025) 10:49

instructions inside a BB can be translated as a list of Pcode instructions that contains
a branching one (which means the block is no more basic and may include a flow
redirection). When it happens, the structures of the CFG and CFG-IR differ,
leading to the creation of new Pcode blocks and edges in the CFG-IR graph. As a
consequence, the CFG-IR contains more nodes with more instructions and more
edges compared to the CFG. If the assembly instructions that are transformed into
a sequence of instructions containing a branch are limited, the general CFG-IR
topology should be preserved to some extent.

Models and features

In this study, two types of model are considered:

 	• Classical ML as baseline models, in particular random forests and gradient
boosting.

 	• GNN, with five message-passing algorithms: GCN, SAGE, GIN, GAT and UNet.

These two types of algorithms do not operate at the same granularity. Classical ML
methods extract graph-level features from the functions whereas GNN methods need
node-level features as input, apart from the graph structure, meaning that each BB,
wheter inside the CFG or the CFG-IR needs to be associated with a feature.

Classical baselines are evaluated with two types of features:

 	• Graph-related features, both common to CFG and CFG-IR, are computed: the
number of nodes, edges, the cyclomatic complexity, the number of strongly
connected components, the mean degree, density, diameter, transitivity, its number
of components, the maximum number of instructions per node, the averaged
number of instructions per node, the total number of instructions per function,
the maximum degree and the minimum degree. Specifically, these features are
complemented with assembly data when available with the CFG, such as the number
imul, shr, shl, sar, div, xor, add, sub instructions in the function, the number of
Immediate in the function and the number of read and write. The corresponding
feature dimensions are respectively 23 and 13 for the CFG and CFG-IR.

 	• An assembly TF-IDF feature, proposed by Salem and Banescu (2016), is analyzed. It
consists in the counts of the 128 most used assembly mnemonics inversely weighted
by the global frequencies for the assembly. Concerning the Pcode, because Pcode has
a limited set of operands, this feature has a dimension of 72.

Conversely, GNN features are gradually enriched as follows:

 	• As a reference, we use an identity feature vector, a one-dimensional vector filled
with 1’s. Such a feature is valid for both the CFG and the CFG-IR. It does not convey
any meaning about the nodes. Consequently, GNN are relying only on the graph
structure to iteratively refine the node embeddings.

 	• The first non-trivial feature vector is based on counting assembly mnemonic
classes. We adopt here an existing strategy (Jiang et al. 2021) which provides a coarse
representation of the assembly mnemonic classes distribution per BB. Each assembly
mnemonic is attributed to a general class of operations, among 27 classes, such
as conditional transfer mnemonics (e.g jne) or logical mnemonics (e.g. and). Such
an approach is based on assembly code exclusively, hence used only with the CFG

Page 11 of 24Cohen et al. Applied Network Science (2025) 10:49

representation. Transferring this feature to Pcode is not relevant as defining Pcode
operation classes is less intuitive and would only create a small number of classes,
insufficient to correctly describe a Pcode block in a case of CFG-IR.

 	• Besides counting user-defined mnemonics classes, we directly compute a counting
mnemonic feature. Specifically to the CFG and its corresponding assembly, it counts
all possible assembly instructions, with 1828 different mnemonics for binaries
compiled in x64. Such a feature is specific to the x64 architecture, thus the CFG. This
feature is complemented by several BB features.6

 	• Counting assembly mnemonics results in a high-dimensional features specific to
a given architecture. To provide a lighter and more robust feature, we define the
Pcode counterpart of the previous counting feature. Its dimension is at most 72
and is available for any architecture. This feature is available for both the CFG-IR
and the CFG, as Pcode can be obtained from assembly. It is further augmented by
specific graph node features, like the number of instructions per node,7 resulting in a
77-dimensional feature.

 	• Motivated by the recent success of NLP (Natural Language Processing)-inspired
state-of-the art approaches addressing the binary similarity problem (Massarelli
et al. 2019), each BB code is given to PalmTree (Li et al. 2021), a transformer trained
on x86 assembly code. The resulting text embedding feature, of size 128, is used as
the initial feature for the GNN. Because there exists no transformer model trained
directly on Pcode, this feature is limited to the CFG graph.

The above models are evaluated with their corresponding candidate feature vectors, on
both Dataset-1 and Dataset-2. To select the best hyperparameters on the validation set,
GridSearchCV and Optuna (Akiba et al. 2019) are respectively used for the baselines
and the GNNs. The Optuna search is applied with three seeds, with the best run leading
to the chosen hyperparameters, such as the number of layers or the hidden dimensions.
Each Optuna run is restricted to 20 trials in order to limit the computational burden.
Baselines and GNNs are respectively implemented using scikit-learn (Pedregosa et al.
2011) and Pytorch-Geometric (Fey and Lenssen 2019).

Because of the unbalanced classes, both in binary and multi-class settings, our bench-
marks are evaluated using the balanced accuracy. This metric heavily penalizes cases
where a class is not properly detected compared to the others.

Results for -O0 and -O2 are shown separately. Indeed, even if they show the same
trend, -O2 results tend to be significantly lower, due to the subsequent optimization that
is applied and may modify the original obfuscation. More details are available in Section
“8”.

Binary classification
This Section is dedicated to the binary classification problem that tries to determine if a
function has been obfuscated or not.

6 The complete additional features are a boolean value indicating if the BB is the first one of the function, label encod-
ing depending of the last mnemonic of a node (conditional jump, unconditional jump, call, ret, other), the number of
instructions per node, the BB number of successors and predecessors, the number of read-write accesses, of immedi-
ates, of syscall and the different number of calls (external, internal or register).
7 The complete additional features are a boolean value indicating if the basic block is the first one of the function, label
encoding depending of the last mnemonic of a node (conditional jump, unconditional jump, call, ret, other), the num-
ber of instructions of a node, the number of its successors and the number of its predecessors.

Page 12 of 24Cohen et al. Applied Network Science (2025) 10:49

Results dedicated to the CFG, both in -O0 and -O2, are available in Tables 3 and 5,
whereas Tables 4 and 6 contain classification scores using CFG-IR.

First, baselines demonstrate satisfactory results, especially for -O0 CFG, achieving at
least 0.60 of balanced accuracy. The best balanced accuracy is achieved with a Gradient
Boosting model and the mnemonic TF-IDF feature. These model and features are almost
all the time slightly better than their respective alternatives, Random Forest and graph-
based features. This result is explained by the fact the graph-based features remain
coarse-grained and high-level and cannot describe precisely enough the semantics of the
function, contrarily to a mnemonic distribution represent that characterizes better the
abnormality induced by obfuscation.

Second, for all the available benchmarks, results are significantly better for the Data-
set-1, compared to the Dataset-2. Such a behavior is expected as this latter dataset is
more challenging. This difference is of at most 0.10, showing that even in a disadvanta-
geous context, it is possible to effectively classify obfuscated functions from unobfus-
cated ones.

GNN results are contrasted. In fact, using the identity feature reflects disappointing
performances, actually outperformed by simpler baselines. The graph structure only
is not sufficient to discriminate between obfuscated functions and unobfuscated ones

Table 3  Binary classification scores on the CFG, depending on features, algorithms and datasets for
-O0 optimization. “-” indicates GPU Out-Of-Memory error
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.702 0.60
assembly (Dim: #23) GradientBoosting 0.725 0.649
TF-IDF on assembly RandomForest 0.76 0.607
mnemonics (Dim: #128) GradientBoosting 0.80 0.683
Identity (Dim: #1) GCN 0.634 0.608

Sage 0.615 0.574
GIN 0.603 0.531
GAT 0.589 0.539
UNet 0.616 0.555
GCN 0.659 0.658

Counting mnemonic Sage 0.694 0.66
classes GIN 0.701 0.673
(Dim: #27) GAT 0.655 0.667

UNet 0.66 0.654
GCN 0.761 0.733

Semantic & counting Sage 0.782 0.70
PCode mnemonics GIN 0.775 0.69
(Dim: #77) GAT 0.77 0.73

UNet 0.753 0.724
GCN 0.795 0.756

Semantic & counting Sage 0.746 0.761
assembly mnemonics GIN 0.806 0.716
(Dim: #1840) GAT 0.801 0.733
PalmTree embeddings UNet 0.788 0.756

GCN 0.763 –
Sage 0.718 –
GIN 0.715 –

(Dim: #128) GAT 0.773 –
UNet 0.768 –

Page 13 of 24Cohen et al. Applied Network Science (2025) 10:49

Table 4  Binary classification scores on the CFG-IR, depending on features, algorithms and datasets
for -O0 optimization. - indicates that the experiments could not be completed due to the -O0 CFG-IR
processing
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.66 –
Pcode (Dim: # 13) GradientBoosting 0.678 –
TF-IDF on Pcode RandomForest 0.708 0.561
mnemonics (Dim: #72) GradientBoosting 0.742 0.619
Identity (Dim: #1) GCN 0.614 –

Sage 0.624 –
GIN 0.618 –
GAT 0.588 –
UNet 0.573 –
GCN 0.783 –

Semantic & counting Sage 0.809 –
Pcode mnemonics GIN 0.77 –
(Dim: #77) GAT 0.768 –

UNet 0.763 –

Table 5  Binary classification scores on the CFG, depending on features, algorithms and datasets for
-O2 optimization
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.661 0.583
assembly (Dim: #23) GradientBoosting 0.674 0.606
TF-IDF on assembly RandomForest 0.70 0.565
mnemonics (Dim: #128) GradientBoosting 0.749 0.595
Identity (Dim: #1) GCN 0.581 0.547

Sage 0.506 0.541
GIN 0.594 0.56
GAT 0.508 0.476
UNet 0.589 0.575

Counting mnemonic GCN 0.62 0.576
classes Sage 0.615 0.57
(Dim: #27) GIN 0.63 0.565

GAT 0.613 0.585
UNet 0.601 0.549
GCN 0.728 0.568

Semantic & counting Sage 0.712 0.559
PCode mnemonics GIN 0.672 0.554
(Dim: #77) GAT 0.59 0.575

UNet 0.697 0.572
GCN 0.787 0.601

Semantic & counting Sage 0.786 0.616
assembly mnemonics GIN 0.782 0.603
(Dim: #1840) GAT 0.778 0.612

UNet 0.783 0.593
GCN 0.763 0.56

PalmTree on assembly Sage 0.718 0.566
code (Dim: #128) GIN 0.792 0.589

GAT 0.779 0.554
UNet 0.776 0.564

Page 14 of 24Cohen et al. Applied Network Science (2025) 10:49

as there exist obfuscations that are only applied within a BB, namely a node inside the
graph, without modifying the graph topology. As a consequence, the identity feature
cannot capture these obfuscated patterns.

The counting mnemonic classes feature exhibits better scores but remains lower than
baselines. Apart from being coarse-grained, establishing these classes depends on an
expert knowledge and does not necessarily reflect the presence of obfuscated schema, as
obfuscation can be performed with standard mnemonics.

Enriching GNN initial features is fundamental, as using a more precise feature directly
based on the mnemonic counting, either Pcode or assembly, considerably increases bal-
anced accuracy, around 10%. They are able to compete with classical baselines and out-
perform them on the Dataset-2. In particular, the Pcode counting shows slightly lower
scores than the assembly counting feature. This behavior is explained by the fact that
Pcode, by using a more concise set of mnemonics, is less capable to express specific
behaviors that are diluted. Thus, its discriminative power is hindered, as its ability to
distinguish obfuscated functions. Nevertheless, it is less costly to train, due to reduced
features dimensions, and can be applied on any compiled binary.

Concerning PalmTree embeddings, contrary to many state-of-the-art papers on
binary similarity (Massarelli et al. 2019; Gao et al. 2022; Ullah and Oh 2021), using first
a model language trained on assembly binaries and initializing GNN features with the
corresponding embeddings shows lower performances compared to simpler counting
features, while being challenging to use, for both memory and time perspectives. As an
example, several PalmTree results cannot be obtained due to an out-of-memory error for
-O0 functions, that are considerably larger than -O2 functions.

Some of these results apply when using the CFG-IR, instead of the regular CFG. In
particular, the underlying Pcode of the CFG-IR present lower scores, compared to their
available CFG counterpart, even for the classical baselines. This difference is however
not meaningful when using the counting Pcode features. This indicates that the resulting
graph topology, induced by the Pcode branching, may include some noise or redundan-
cies that cannot be compensated by basic features.

Table 6  Binary classification scores on the CFG-IR, depending on features, algorithms and datasets
for -O2 optimization
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.631 0.568
assembly (Dim: #13) GradientBoosting 0.634 0.594
TF-IDF on Pcode RandomForest 0.643 0.556
mnemonics (Dim: #72) GradientBoosting 0.675 0.584
Identity (Dim: #1) GCN 0.579 0.534

Sage 0.518 0.481
GIN 0.575 0.502
GAT 0.5 0.472
UNet 0.5 0.5
GCN 0.70 0.574

Semantic & counting Sage 0.736 0.578
Pcode mnemonics GIN 0.703 0.525
(Dim: #77) GAT 0.689 0.549

UNet 0.694 0.586

Page 15 of 24Cohen et al. Applied Network Science (2025) 10:49

Moreover, building these CFG-IR is considerably more costly than usual CFG. In fact,
one assembly instruction is translated into multiple Pcode ones. The assembly instruc-
tion that leads to the largest translation in terms of Pcode instruction in our dataset is
packuswb xmm0, xmm2 that gives 164 Pcode instructions. Among these multiple Pcode
instructions, some of them are potentially branching instructions. Building the cor-
responding CFG-IR implies new nodes and edges, leading to a significant graph size
increase. This effect is particularly pronounced for -O0 graphs that are larger that -O2.
These reasons explain the sudden computational overhead, both in terms of memory
and running time, for building -O2 CFG-IR graphs. Consequently, it is untracktable to
process large functions compiled in -O0 for the Dataset-2, leading to missing results in
Tables 4 and 8. As such, building CFG-IR graphs can only be performed at a smaller
scale and would imply a significant computing power to extend it to larger graphs.

Concerning the optimization level, -O0 results present up to 10% better results than
-O2. This behavior is explained by the fact that optimization can remove totally or par-
tially some obfuscated patterns from the function. Distinguishing obfuscated functions
from unobfuscated ones is consequently more difficult, especially for basic features, such
as the GNN identity feature, that exhibit up to 10% of loss in terms of balanced accuracy.

Multi-class classification
In multi-class classification, the goal is to determine the type of obfuscation that has
been applied to a function. In this experiment, given the dataset presented in Section
“5.1”, there exists 11 classes.

CFG results for -O0 and -O2 are respectively available in Tables 7 and 9, whereas
Tables 8 and 10 contain classification scores for CFG-IR experiment.

These results confirm many observations that were drawn in the binary case. In partic-
ular, in general, for -O0 optimization, multi-class scores are 10% lower than in the binary
case. Classical baselines perform remarkably well, given the fact there are 11 classes. As
a comparison, previous works consider at most 4 classes (Jiang et al. 2021). GNNs out-
perform baselines, especially on Dataset-2, when the features are enriched with seman-
tic information originated from a counting mnemonic vector. On the contrary, GNNs
feeded with naive features, like the identity or counting mnemonic classes features, suf-
fer from disappointing results, far from the ones obtained with more meaningful fea-
tures. This difference between features is reinforced in the multi-class experiment.

Conversely, multi-class -O2 results show a high discrepancy compared to the binary
case. Previously, the gap between -O0 and -O2 was limited, whereas -O2 exacerbates
this variation. GNNs, even when using relevant features conveying part of the function
semantics, are not able to compete with simpler baselines. This is due to the fact distin-
guishing between precise and sometimes subtle obfuscations when they are optimized,
consequently partially removed or altered, is much more difficult.

Optimization against obfuscation
Optimization and obfuscation are deeply intertwined. If obfuscation tries to hide the
program behavior by deliberately inserting complex code sequences, optimization con-
versely attempts to get rid of them. As a consequence, applying an obfuscation does
not guarantee that the final code will be obfuscated. Many parameters influence such a

Page 16 of 24Cohen et al. Applied Network Science (2025) 10:49

Table 7  Multi-class classification scores on the CFG, depending on features, algorithms and datasets
for -O0 optimization. “-” indicates GPU Out-Of-Memory error
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.65 0.57
assembly (Dim: #23) GradientBoosting 0.66 0.594
TF-IDF on assembly RandomForest 0.697 0.593
mnemonics (Dim: #128) GradientBoosting 0.724 0.579
Identity (Dim: #1) GCN 0.323 0.326

Sage 0.341 0.347
GIN 0.414 0.407
GAT 0.192 0.195
UNet 0.362 0.299

Counting mnemonic GCN 0.431 0.462
classes Sage 0.498 0.499
(Dim: #27) GIN 0.488 0.474

GAT 0.45 0.342
UNet 0.439 0.448
GCN 0.699 0.693

Semantic & counting Sage 0.611 0.729
PCode mnemonics GIN 0.706 0.71
(Dim: #77) GAT 0.684 0.65

UNet 0.704 0.627
GCN 0.74 0.659

Semantic & counting Sage 0.738 0.714
assembly mnemonics GIN 0.744 0.69
(Dim: #1840) GAT 0.733 0.723

UNet 0.733 0.68
GCN 0.696 –

PalmTree on assembly Sage 0.698 –
code (Dim: #128) GIN 0.693 –

GAT 0.685 –
UNet 0.67 –

Table 8  Multi-class classification scores on the CFG-IR, depending on features, algorithms and
datasets for -O0 optimization. - indicates that the experiments could not be completed due to the
-O0 CFG-IR processing
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.535 –
assembly (Dim: #13) GradientBoosting 0.538 –
TF-IDF on Pcode RandomForest 0.645 0.566
mnemonics (Dim: #72) GradientBoosting 0.675 0.589
Identity (Dim: #1) GCN 0.301 –

Sage 0.306 –
GIN 0.381 –
GAT 0.16 –
UNet 0.287 –
GCN 0.716 –

Semantic & counting Sage 0.741 –
Pcode mnemonics GIN 0.70 –
(Dim: #77) GAT 0.679 –

UNet 0.692 –

Page 17 of 24Cohen et al. Applied Network Science (2025) 10:49

Table 9  Multi-class classification scores for CFG, depending on features, algorithms and datasets for
-O2 optimization. “-” indicates GPU Out-Of-Memory error
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.418 0.362
assembly (Dim: #23) GradientBoosting 0.422 0.368
TF-IDF on assembly RandomForest 0.469 0.387
mnemonics (Dim: #128) GradientBoosting 0.481 0.33
Identity (Dim: #1) GCN 0.246 0.177

Sage 0.135 0.156
GIN 0.253 0.174
GAT 0.128 0.1
UNet 0.245 0.198

Counting mnemonic GCN 0.268 0.196
classes Sage 0.28 0.249
(Dim: #27) GIN 0.265 0.144

GAT 0.261 0.221
UNet 0.257 0.212
GCN 0.36 0.275

Semantic & counting Sage 0.317 0.247
PCode mnemonics GIN 0.364 0.271
(Dim: #77) GAT 0.353 0.256

UNet 0.374 0.261
GCN 0.38 0.327

Semantic & counting Sage 0.386 0.269
assembly mnemonics GIN 0.381 0.309
(Dim: #1840) GAT 0.242 0.252

UNet 0.373 0.307
GCN 0.36 0.288

PalmTree on assembly Sage 0.355 0.278
code (Dim: #128) GIN 0.371 0.248

GAT 0.347 0.282
UNet 0.28 –

Table 10  Multi-class classification scores on the CFG-IR, depending on features, algorithms and
datasets for -O2 optimization
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.374 0.319
assembly (Dim: #13) GradientBoosting 0.393 0.322
TF-IDF on Pcode RandomForest 0.402 0.363
mnemonics (Dim: #72) GradientBoosting 0.41 0.307
Identity (Dim: #1) GCN 0.218 0.18

Sage 0.111 0.197
GIN 0.244 0.158
GAT 0.09 0.104
UNet 0.222 0.1
GCN 0.372 0.244

Semantic & counting Sage 0.364 0.265
Pcode mnemonics GIN 0.367 0.245
(Dim: #77) GAT 0.148 0.236

UNet 0.345 0.233

Page 18 of 24Cohen et al. Applied Network Science (2025) 10:49

result: the compiler version compared to the obfuscation passes, the optimization level
that is enabled, the order of the obfuscation passes among the compiler,8 etc.

Studying the intricacies of obfuscation and optimization is challenging. Studying why
the -O2 results were so different from -O0 is a first step over a better understanding of
these subjects.

The -O0 optimization level corresponds to the optimization level that offers the mini-
mal transformation of the source code. Only small optimizations, such as constant prop-
agation, intervene, both in the compiler front-end and optimization phase. It consists in
replacing values that are known constant in further variables or computation in order
to limit the binary code size. Removing it is difficult and makes the final binary running
considerably slower than standard -O0, which is already slow compared to the -O2 opti-
mization level. -O2, contrary to -O0, activates various optimization passes, including
inlining, and then may remove light obfuscations. For example, among the three obfus-
cations provided by OLLVM, CFF and BogusControlFlow are applied before any optimi-
zation, meaning that they might be further removed by the compiler.

As a consequence, the -O2 dataset we built is potentially subject to label noise, as some
functions that were labeled obfuscated finally are not, due to the compiler optimization.
We locate these functions, considered obfuscated, but that do not differ from their plain
optimized counterparts and correct their label to unobfuscated in the dataset. 12,057,
3,013 and 3,787 functions are concerned respectively for the train, validation and test
sets for the Dataset-1 and 4,283, 1,094 and 19,395 for the Dataset-2.

Once Dataset-1 and Dataset-2 are fixed for -O2 functions, we repeat the previous
experiments and quantify the performance divergence between mislabeled data and
fixed dataset. Results for binary classification using the CFG and CFG-IR are available
in Tables 11 and 12, whereas multi-class results are displayed in Tables 13 and 14. Fixing
the mislabeled functions within the -O2 dataset has a contrasted effect. In the binary
case, baselines are boosted with a 10% balanced accuracy increase, sometimes outper-
forming GNNs on the Dataset-2. GNNs results are more contrasted and this refinement
seems to have little effect for models trained on the Dataset-1, contrary to the Dataset-2
where the performances significantly increase. For the multi-class setting, this perfor-
mance boost is even more pronounced, for any dataset and model. This illustrates the
necessity to consider carefully obfuscation when optimization is involved.

Real-world examples
These two experiments aim to extend the previous classification tasks to real-world
binaries. A malware and a banking application, both obfuscated, are studied. There is no
information available about how they were compiled and deciding between a -O0 or -O2
model is difficult. Consequently, we analyze both the best -O0 and -O2 model, in binary
and multi-class classification, privileging models trained on Dataset-1, as they have seen
functions more diverse compared to the Dataset-2. Binary classification is then evalu-
ated with a 1840-sized GIN and the refined SAGE model with 1840 as input dimension
for -O2. For multi-class classification, the evaluated models are again a 1840-sized GIN
and a refined Gradient Boosting feeded with a assembly mnemonic TF-IDF.

8 if the obfuscator directly interfaces with the compiler, such as OLLVM.

Page 19 of 24Cohen et al. Applied Network Science (2025) 10:49

Table 11  Binary classification scores on the CFG, depending on features, algorithms for -O2
optimization, on a refined dataset
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.723 0.693
assembly (Dim: #23) GradientBoosting 0.741 0.679
TF-IDF on assembly RandomForest 0.788 0.722
mnemonics (Dim: #128) GradientBoosting 0.791 0.688
Identity (Dim: #1) GCN 0.604 0.524

Sage 0.545 0.511
GIN 0.635 0.552
GAT 0.524 0.528
UNet 0.579 0.5

Counting mnemonic GCN 0.646 0.5
classes Sage 0.646 0.582
(Dim: #27) GIN 0.657 0.5

GAT 0.65 0.558
UNet 0.537 0.602
GCN 0.786 0.533

Semantic & counting Sage 0.778 0.59
PCode mnemonics GIN 0.762 0.567
(Dim: #77) GAT 0.756 0.612

UNet 0.692 0.546
GCN 0.734 0.608

Semantic & counting Sage 0.793 0.689
assembly mnemonics GIN 0.781 0.655
(Dim: #1840) GAT 0.776 0.65

UNet 0.773 0.623
GCN 0.759 0.588

PalmTree on assembly Sage 0.752 0.56
code (Dim: #128) GIN 0.776 0.586

GAT 0.772 0.528
UNet 0.764 0.63

Table 12  Binary classification scores on the CFG-IR, depending on features, algorithms for -O2
optimization, on a refined dataset
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.697 0.638
assembly (Dim: #13) GradientBoosting 0.676 0.627
TF-IDF on Pcode RandomForest 0.737 0.702
mnemonics (Dim: #72) GradientBoosting 0.748 0.677
Identity (Dim: #1) GCN 0.588 0.524

Sage 0.496 0.493
GIN 0.645 0.565
GAT 0.529 0.523
UNet 0.583 0.506
GCN 0.771 0.566

Semantic & counting Sage 0.685 0.547
Pcode mnemonics GIN 0.772 0.575
(Dim: #77) GAT 0.769 0.51

UNet 0.747 0.525

Page 20 of 24Cohen et al. Applied Network Science (2025) 10:49

Table 13  Multi-class classification scores for CFG, depending on features, algorithms and datasets
for -O2 optimization, on a refined dataset. - indicates OOM error
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.553 0.378
assembly (Dim: #23) GradientBoosting 0.597 0.389
TF-IDF on assembly RandomForest 0.663 0.441
mnemonics (Dim: #128) GradientBoosting 0.685 0.452
Identity (Dim: #1) GCN 0.263 0.226

Sage 0.245 0.267
GIN 0.227 0.185
GAT 0.2 0.194
UNet 0.262 0.234

Counting mnemonic GCN 0.283 0.287
classes Sage 0.319 0.244
(Dim: #27) GIN 0.285 0.123

GAT 0.293 0.193
UNet 0.293 0.25
GCN 0.451 0.331

Semantic & counting Sage 0.455 0.319
PCode mnemonics GIN 0.443 0.334
(Dim: #77) GAT 0.391 0.326

UNet 0.434 0.354
GCN 0.529 0.435

Semantic & counting Sage 0.46 0.406
assembly mnemonics GIN 0.484 0.225
(Dim: #1840) GAT 0.509 0.404

UNet 0.521 0.411
GCN 0.507 0.384

PalmTree on assembly Sage 0.499 0.395
code (Dim: #128) GIN 0.495 0.239

GAT 0.487 0.336
UNet 0.444 0.34

Table 14  Multi-class classification scores on the CFG-IR, depending on features, algorithms and
datasets for -O2 optimization
Features Algorithm Balanced accuracy

Dataset-1 Dataset-2
Graph features & RandomForest 0.478 0.315
assembly (Dim: #13) GradientBoosting 0.484 0.312
TF-IDF on Pcode RandomForest 0.561 0.393
mnemonics (Dim: #72) GradientBoosting 0.566 0.393
Identity (Dim: #1) GCN 0.25 0.225

Sage 0.27 0.24
GIN 0.286 0.235
GAT 0.206 0.183
UNet 0.195 0.13
GCN 0.465 0.349

Semantic & counting Sage 0.359 0.331
Pcode mnemonics GIN 0.40 0.302
(Dim: #77) GAT 0.399 0.242

UNet 0.433 0.262

Page 21 of 24Cohen et al. Applied Network Science (2025) 10:49

XTunnel

XTunnel is a malware, developed by APT28 hacking group, that can relay traffic between
a victim and a server used by cybercriminals to control compromised devices and exfil-
trate data. Multiple variants have been found on governmental and institutional net-
works, for which some of them were obfuscated. This obfuscation has been used to
evade security products. Malware deobfuscation helps to highlight and determine mali-
cious functionalities hidden inside these obfuscated executables (Bardin et al. 2017).
Then, locating and determining the obfuscation type is necessary before any deobfus-
cation attempt. These tasks are performed on two XTunnel obfuscated samples,9 hav-
ing respectively 3,693 and 3,982 functions. Results are compared with a previously built
ground truth, that was computed using an approach based on symbolic execution (Bar-
din et al. 2017). Such a ground truth asserts with a satisfactory confidence that these
samples were heavily obfuscated using OpaquePredicates. The binary scores are com-
puted over all the executable functions, whereas the multi-class scores are limited to
obfuscated functions only. Results are available in Table 15. By considering a -O2 model,
the binary balanced accuracy is disappointing, whereas the multi-class one is more sat-
isfactory. The -O0 model achieves decent scores, close to the ones obtained in the previ-
ous experiments in Sections “6” and “7”. This does not imply that the XTunnel samples
were compiled with -O0, just that the -O0 model recognizes obfuscation better than the
-O2 one on these two samples.

Interestingly, many functions are considered obfuscated with EncodeArithmetic
instead of OpaquePredicates. Indeed, distinguishing these two obfuscations is tedious
as an OpaquePredicate is simply an EncodeArithmetic that turns out to always evaluate
to the same boolean value, making the function to always branch to the same next BB.
Consequently, our models can still detect a suspicious pattern related to OpaquePredi-
cates and we consider these predictions as valid.

This shows that these detection and characterization methods scale well on real-world
malware.

Rabobank

Rabobank is a financial institution that is based in Netherlands. An Android applica-
tion is available for customers, that is regularly updated. The version 35.0 was released
in March 2024. Apart from the Android bytecode, it contains several native binaries,
that are heavily obfuscated. The libnative-lib.35-0.so binaries is particularly interesting: it
contains only 172 functions and a preliminary manual analysis quickly reveals that most
of them are obfuscated. For each function, we try our best to build a reliable ground
truth. This task is especially challenging in this example, as multiple obfuscations are
combined within the same function. The previous multi-class framework, detailed in
Section “7”, is not adapted for multi-label task. Multi-label in a multi-class setting, with

9 Their corresponding hashes are C637E01F50F5FBD2160B191F6371C5DE2AC56DE4 and 99B454262DC-
26B081600E844371982A49D334E5E.

Table 15  Obfuscation detection results on two XTunnel samples for both -O0/ -O2
Binary balanced accuracy Multi-class balanced accuracy

Sample C637E 0.737/ 0.357 0.657 / 0.559
Sample 99B45 0.734 / 0.369 0.576 / 0.55

Page 22 of 24Cohen et al. Applied Network Science (2025) 10:49

a high number of classes, is little addressed in literature (Tarekegn et al. 2024) and par-
ticularly challenging.

In this example, for a given function obfuscated with multiple passes, any single obfus-
cation that is part of the applied obfuscation passes is considered as a correct label for
the function. Such a labeling is limited as ideally, a reverse engineer would need to pre-
dict all the obfuscation passes that are applied on a function, not a single one.

Functions obfuscated with CFF are easily recognized. However, it is difficult to dis-
tinguish between MBA and OpaquePredicates, even from dead code insertion (that is
no part of our dataset). As a consequence, we only establish a fixed ground-truth for
functions for which we are certain about the obfuscation that was applied. The rest is
discarded, resulting in 118 functions used for final classification.

Results are available in Table 16. Binary scores, both in -O0 and -O2, are satisfactory
and aligned with the previous reported scores in Section “6”. For the multi-class setting,
results are disappointing, especially in -O0. This shows how difficult it is for a model
to determine a class of obfuscation when multiple passes are applied on the same time,
making the model choosing either one of the passes and most of the time, completely
choose another pass.

Conclusion
To conclude, this work provides a general study about obfuscation detection for both
binary and multi-class settings. It demonstrates the efficiency and the robustness of
standard baselines, that achieve satisfactory performances with simple and fast mod-
els. They however cannot compete with GNNs that, combined with meaningful features
conveying part of function semantics, present higher scores and a better generalization
power, especially in a context where test data can be far from training data. The superi-
ority of GNN is assessed only if the initial node features correctly describe the BBs as a
GNN with poor quality features is considerably less efficient than baselines. In particu-
lar, Pcode and assembly mnemonics are well adapted to be used in a feature. The first
one is CPU-agnostic, memory and time saving while being less efficient that the sec-
ond one, as it is less discriminative than assembly mnemonics. In particular, using Pcode
is useful to build a CFG representation completely independent from the architecture,
even though the corresponding obfuscation detection scores are slightly lower than the
regular CFG. These results are valid for the binary and multi-class settings. The only set-
ting where all the tested algorithms in general exhibit disappointing performances are
the -O2 scenario, where the obfuscation are harder to distinguished because of the sub-
sequent optimization applied on the code. In this context, baselines are the ones that
present more robustness than GNN. Finally, these results are confirmed with a two real-
world examples.

If this work seeks to be as complete as possible, it is subject to specific limitations. First,
building a real-word obfuscated dataset implies a lot of implementation constraints. We
try our best to represent the large variety of obfuscators and obfuscations, given acces-
sible resources. Because obfuscation and optimization are intertwined, it is difficult to
ensure that the obfuscation was correctly applied and that the compiler optimizations

Table 16  Obfuscation detection results on the Rabobank−35.0 libnative
Binary balanced accuracy Multi-class balanced accuracy

Rabonbank−35.0 0.921 / 0.768 0.017 / 0.319

Page 23 of 24Cohen et al. Applied Network Science (2025) 10:49

do not remove or attenuate initial obfuscation, especially in -O2. As a result, our data-
set may contain specific functions that differ from what they should be. Second, GNN
hyperparameters were obtained with a budget constraint. As a consequence, specific
GNNs may have been advantaged compared to others. As an example, GAT takes a long
time to train compared to simpler models such as GCN.

Finally, this works constitutes only a first step of a more general study on obfuscation
detection. More attention should be dedicated to innovating graph types and features
that should capture as much as possible the function semantics. The binary similarity
problem (Marcelli et al. 2022) faces the same challenge, leading to the development of
new graphs, such as SOG (Semantic Oriented Graph) (He et al. 2024) that is, to the best
of our knowledge, the first attempt that tries to represent binary code by combining
multiple edge types (data, control-flow, effects) inside a graph using solely disassembly.
This representation seems promising as it brings together all the key aspects of a func-
tion, in particular part of its semantics.
Author Contributions
R.C drafted the main manuscript. R.D, F.Y, and F.R contributed to the overall conceptual design of the paper and provided
substantial revisions and suggestions. All authors reviewed and approved the final version of the manuscript.

Funding
The authors thank the Agence Innovation Defense (AID) for its financial support.

Data availability
The dataset used in this work is available at ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​q​u​​a​r​k​s​l​​a​b​/​d​i​​f​f​i​n​g​_​​o​b​f​u​​s​c​a​t​i​o​n​_​d​a​t​a​s​e​t

Declarations

Conflict of interest
The authors declare no Conflict of interest.

Code availability
The artifacts related to this work are available at ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​q​u​​a​r​k​s​l​​a​b​/​o​b​​f​u​s​c​a​t​​i​o​n​_​​b​e​n​c​h​m​a​r​k​_​c​o​d​e​_​a​r​t​i​f​a​c​t​s

Received: 31 March 2025 / Accepted: 20 August 2025

References
Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a next-generation hyperparameter optimization framework. In:

Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2623–2631
Bardin S, David R, Marion J-Y (2017) Backward-bounded dse: targeting infeasibility questions on obfuscated codes. In: 2017 IEEE

symposium on security and privacy (SP), pp 633–651 . https://doi.org/10.1109/SP.2017.36
Blazytko T (2021) Automated detection of obfuscated code. ​h​t​t​p​s​:​​/​/​s​y​n​​t​h​e​s​i​s​​.​t​o​/​​2​0​2​1​/​​0​8​/​1​0​​/​o​b​f​u​s​​c​a​t​i​​o​n​_​d​e​t​e​c​t​i​o​n​.​h​t​m​l.

Accessed 20 Nov 2023
Blazytko T (2021) Statistical analysis to detect uncommon code. ​h​t​t​p​s​:​​/​/​s​y​n​​t​h​e​s​i​s​​.​t​o​/​​2​0​2​1​/​​0​3​/​0​3​​/​f​l​a​t​t​​e​n​i​n​​g​_​d​e​t​e​c​t​i​o​n​.​h​t​m​l.

Accessed 20 Nov 2023
Blazytko T (2023) Statistical analysis to detect uncommon code. ​h​t​t​p​s​:​​/​/​s​y​n​​t​h​e​s​i​s​​.​t​o​/​​2​0​2​3​/​​0​1​/​2​6​​/​u​n​c​o​m​​m​o​n​_​​i​n​s​t​r​​u​c​t​i​o​​n​_​s​e​q​u​​

e​n​c​e​​s​.​h​t​m​l. Accessed 20 Nov 2023
Borgerson M Pypcode. ​h​t​t​p​s​:​​/​/​d​o​c​​s​.​a​n​g​r​​.​i​o​/​​p​r​o​j​e​​c​t​s​/​p​​y​p​c​o​d​e​​/​e​n​/​​l​a​t​e​s​t​/. Accessed 05 Aug 2024
Cohen R, David R, Mori R, Yger F, Rossi F (2025) Experimental study of binary diffing resilience on obfuscated programs. In:

International conference on detection of intrusions and malware, and vulnerability assessment. Springer
Collberg C The Tigress C obfuscator. https://tigress.wtf/index.html. Accessed 17 Aug 2023
David R, Coniglio L, Ceccato M (2020) Qsynth-a program synthesis based approach for binary code deobfuscation. In: BAR 2020

workshop
Errica F, Podda M, Bacciu D, Micheli A (2020) A fair comparison of graph neural networks for graph classification. In: International

conference on learning representations. https://openreview.net/forum?id=HygDF6NFPB
Ferrari Dacrema M, Cremonesi P, Jannach D (2019) Are we really making much progress? A worrying analysis of recent neural

recommendation approaches. In: Proceedings of the 13th ACM conference on recommender systems. RecSys ’19. ACM.
https://doi.org/10.1145/3298689.3347058

Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR workshop on representation
learning on graphs and manifolds

Gao H, Zhang T, Chen S, Wang L, Yu F (2022) Fusion: measuring binary function similarity with code-specific embedding and
order-sensitive gnn. Symmetry 14(12):2549

https://github.com/quarkslab/diffing_obfuscation_dataset
https://github.com/quarkslab/obfuscation_benchmark_code_artifacts
https://doi.org/10.1109/SP.2017.36
https://synthesis.to/2021/08/10/obfuscation_detection.html
https://synthesis.to/2021/03/03/flattening_detection.html
https://synthesis.to/2023/01/26/uncommon_instruction_sequences.html
https://synthesis.to/2023/01/26/uncommon_instruction_sequences.html
https://docs.angr.io/projects/pypcode/en/latest/
https://tigress.wtf/index.html
https://openreview.net/forum?id=HygDF6NFPB
https://doi.org/10.1145/3298689.3347058

Page 24 of 24Cohen et al. Applied Network Science (2025) 10:49

Gao H, Ji S (2019) Graph u-nets. In: Chaudhuri K, Salakhutdinov R (eds.) Proceedings of the 36th international conference on
machine learning. Proceedings of machine learning research, vol 97, pp 2083–2092. PMLR. ​h​t​t​p​s​:​​/​/​p​r​o​​c​e​e​d​i​n​​g​s​.​m​​l​r​.​p​r​​e​s​s​/​
v​​9​7​/​g​a​o​​1​9​a​.​​h​t​m​l

Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph domains. In: Proceedings. 2005 IEEE international
joint conference on neural networks, vol 2, pp 729–7342 . https://doi.org/10.1109/IJCNN.2005.1555942

Greco C, Ianni M, Guzzo A, Fortino G (2023) Explaining binary obfuscation, pp 22–27 . ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​0​9​/​C​S​​R​5​7​5​0​​6​.​2​0​2​3​​.​
1​0​2​​2​4​8​2​5

Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. In: Proceedings of the 31st interna-
tional conference on neural information processing systems. NIPS’17, pp. 1025–1035. Curran Associates Inc., Red Hook, NY,
USA

He H, Lin X, Weng Z, Zhao R, Gan S, Chen L, Ji Y, Wang J, Xue Z (2024) Code is not natural language: unlock the power of
semantics-oriented graph representation for binary code similarity detection. In: 33rd USENIX security symposium (USE-
NIX Security 24), PHILADELPHIA, PA

Jiang S, Hong Y, Fu C, Qian Y, Han L (2021) Function-level obfuscation detection method based on graph convolutional net-
works. J Inf Secur Appl 61:102953. https://doi.org/10.1016/j.jisa.2021.102953

Junod P, Rinaldini J, Wehrli J, Michielin J (2015) Obfuscator-llvm–software protection for the masses. In: Wyseur, B. (ed.) Proceed-
ings of the IEEE/ACM 1st international workshop on software protection, SPRO’15, Firenze, Italy, May 19th, 2015, pp 3–9.
IEEE. https://doi.org/10.1109/SPRO.2015.10

Kanzaki Y, Monden A, Collberg C (2015) Code artificiality: a metric for the code stealth based on an n-gram model. In: 2015 IEEE/
ACM 1st international workshop on software protection, pp 31–37 . IEEE

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on
learning representations. https://openreview.net/forum?id=SJU4ayYgl

Kriege NM, Johansson FD, Morris C (2020) A survey on graph kernels. Appl Netw Sci 5(1):6. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​4​1​1​0​9​-​0​1​
9​-​0​1​9​5​-​3​​​​​​​

Li X, Qu Y, Yin H (2021) Palmtree: Learning an assembly language model for instruction embedding. In: Proceedings of the 2021
ACM SIGSAC conference on computer and communications security. CCS ’21, pp 3236–3251. Association for Computing
Machinery, New York, NY, USA . https://doi.org/10.1145/3460120.3484587

Marcelli A, Graziano M, Ugarte-Pedrero X, Fratantonio Y, Mansouri M, Balzarotti D (2022) How machine learning is solving the
binary function similarity problem. In: 31st USENIX security symposium (USENIX Security 22), pp 2099–2116

Massarelli L, Di Luna GA, Petroni F, Querzoni L, Baldoni R et al (2019) Investigating graph embedding neural networks with
unsupervised features extraction for binary analysis. In: Proceedings of the 2nd workshop on binary analysis research
(BAR), pp 1–11

Nagra J, Collberg C (2009) Surreptitious software: obfuscation, watermarking, and tamperproofing for software protection:
obfuscation, watermarking, and tamperproofing for software protection. Pearson Education, London

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011)
Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

Quarkslab: obfuscation dataset. ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​q​u​​a​r​k​s​l​​a​b​/​d​i​​f​f​i​n​g​_​​o​b​f​u​​s​c​a​t​i​o​n​_​d​a​t​a​s​e​t. Accessed 09 Jan 2024
Raja V, Fernandes KJ (2007) Reverse engineering: an industrial perspective. Springer, Berlin
Salem A, Banescu S (2016) Metadata recovery from obfuscated programs using machine learning. In: Proceedings of the 6th

workshop on software security, protection, and reverse engineering, pp 1–11
Salwan J, Bardin S, Potet M-L (2018) Symbolic deobfuscation: from virtualized code back to the original. In: International confer-

ence on detection of intrusions and malware, and vulnerability assessment. Springer, pp 372–392
Schrittwieser S, Wimmer E, Mallinger K, Kochberger P, Lawitschka C, Raubitzek S, Weippl ER (2023) Modeling obfuscation stealth

through code complexity. In: European symposium on research in computer security. Springer, pp 392–408
Sharif MI, Lanzi A, Giffin JT, Lee W (2008) Impeding malware analysis using conditional code obfuscation. In: NDSS
Tarekegn AN, Ullah M, Cheikh FA (2024) Deep learning for multi-label learning: a comprehensive survey . ​h​t​t​p​s​:​/​/​a​r​x​i​v​.​o​r​g​/​a​b​s​/​

2​4​0​1​.​1​6​5​4​9​​​​​​​
Tofighi-Shirazi R, Asăvoae IM, Elbaz-Vincent P (2019) Fine-grained static detection of obfuscation transforms using ensemble-

learning and semantic reasoning. In: Proceedings of the 9th workshop on software security, protection, and reverse
engineering. SSPREW9 ’19. Association for Computing Machinery, New York, NY, USA. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​4​5​/​3​3​7​1​3​0​7​.​3​
3​7​1​3​1​3​​​​​​​

Tofighi-Shirazi R, Asavoae I-M, Elbaz-Vincent P, Le T-H (2019) Defeating opaque predicates statically through machine learning
and binary analysis. In: Proceedings of the 3rd ACM workshop on software protection, pp 3–14

Ullah S, Oh H (2021) Bindiff nn: learning distributed representation of assembly for robust binary diffing against semantic differ-
ences. IEEE Trans Softw Eng 48(9):3442–3466

Velčković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: International conference on
learning representations . https://openreview.net/forum?id=rJXMpikCZ

Wang C (2001) A security architecture for survivability mechanisms. University of Virginia, Virginia
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu P (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw

Learn Syst 32(1):4–24. https://doi.org/10.1109/TNNLS.2020.2978386
Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: International conference on learning

representations. https://openreview.net/forum?id=ryGs6iA5Km
Yadegari B, Johannesmeyer B, Whitely B, Debray S (2015) A generic approach to automatic deobfuscation of executable code.

In: 2015 IEEE symposium on security and privacy, pp 674–691 . https://doi.org/10.1109/SP.2015.47
Zhou Y, Main A, Gu YX, Johnson H (2007) Information hiding in software with mixed boolean-arithmetic transforms. In: Interna-

tional workshop on information security applications. Springer, pp 61–75

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://proceedings.mlr.press/v97/gao19a.html
https://proceedings.mlr.press/v97/gao19a.html
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/CSR57506.2023.10224825
https://doi.org/10.1109/CSR57506.2023.10224825
https://doi.org/10.1016/j.jisa.2021.102953
https://doi.org/10.1109/SPRO.2015.10
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1145/3460120.3484587
https://github.com/quarkslab/diffing_obfuscation_dataset
https://arxiv.org/abs/2401.16549
https://arxiv.org/abs/2401.16549
https://doi.org/10.1145/3371307.3371313
https://doi.org/10.1145/3371307.3371313
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1109/SP.2015.47

	﻿Identifying obfuscated code through graph-based semantic analysis of binary code
	﻿Abstract
	﻿Introduction
	﻿﻿Binary representation and obfuscation
	﻿﻿Machine learning for graphs
	﻿﻿Related papers
	﻿﻿Experimental settings
	﻿﻿Dataset
	﻿﻿Graph types
	﻿﻿Models and features

	﻿﻿Binary classification
	﻿﻿Multi-class classification
	﻿﻿Optimization against obfuscation
	﻿﻿Real-world examples
	﻿XTunnel
	﻿Rabobank

	﻿﻿Conclusion
	﻿References

