black hat USA 2021

Greybox Program Synthesis: A New Approach to Attack Dataflow Obfuscation

Robin David <rdavid@quarkslab.com>

About me

O Software Security Engineer @ Quarkslab

Primarily interested in attacking
 obfuscation and automating bug
 discovery

Agenda

I. Introduction

II. Synthesis Primer

- Usages
- Application to software deobfuscation

III. Greybox Synthesis

- Algorithm overview
- black-box I/O oracle
- whitebox AST search

IV. Table generation

V. Implementation in QSynthesis (deobfuscation up-to reassembled instructions)

- implementation & reassembly
- IDA integration
- VI. Use-cases

VII. Conclusion

Introduction

(obfuscation techniques)

Obfuscation

What?

Transformation of a program P in a **semantically equivalent** P' harder to understand

Why?

To protect intellectual property from

reverse-engineering

How?

Obfuscation Diversity

Control-Flow Obfuscation

Hiding the **logic** and algorithm of the program

virtualization, opaque predicates, CFG-flattening, split, merge, packing, implicit flow, MBA, loop-unrolling...

Data-Flow Obfuscation

Hiding **data**: constants, strings, APIs, keys etc.

data encoding, MBA, arithmetic encoding, whitebox, array split/fold/merge, variable splitting...

Data Obfuscation (data-flow)

⇒ This work focuses on data-flow and more especially MBA (Mixed Boolean Arithmetic) (but many other transformation exists like: data encoding, whitebox, variable splitting/merging ..)

OBFUSCATION

$$(((((((\land \land \neg B) + B) \ll 1) \land \neg ((\land \lor B) - ((\land \land B))) \ll 1) - (((\land \land B))) \ll 1) - (((\land \land B))) \land (A \land B))))$$
DEOBFUSCATION?

$$(((((((\land \land \neg B) + B) \ll 1) - ((\land \land B))) \land (A \land A)))))$$

Deobfuscation Problems

Deobfuscating data-flow expressions on real-world obfuscated programs yield **two distinct** research problems.

PB #1

Locating the data to deobfuscate and knowing **what to deobfuscate** (depends on what you're looking for in the binary).

(This is specific to each binary and is mostly manual)

PB #2

Deobfuscating the data obtained after it gets located (in our context a data-flow expression).

(Synthesis only addresses this issue !)

Synthesis primer

Program Synthesis

- ⇒ Program synthesis consists in automatically deriving a program from
 - **O** A high-level specification (typically its semantic through its I/O behaviour)
 - Additional constraints:
 - Compilation: a faster program
 - Deobfuscation: a **smaller** or more readable program

Synthesis for Superoptimization

Synthesis is used in a **variety** of **domains**. Applied on program analysis it is mostly used for **optimization** (known as super-optimization)

or deobfuscation.

(backed by SMT solving)

Superoptimizers

STOKE

A stochastic superoptimizer and program synthesizer

AT CORE

LEVEL THE

SAME ISSUE

STOKE is a stochastic optimizer and program synthesizer for the x86-64 instruction set. STOKE uses random search to explore the extremely highdimensional space of all possible program transformations. Although any one random transformation is unlikely to produce a code sequence that is desirable, the repeated application of millions of transformations is sufficient to produce novel and non-obvious code sequences. STOKE can be used in many different scenarios, such as optimizing code for performance or size, synthesizing an implementation from scratch or to trade accuracy of floating point computations for performance. As a superoptimizer, STOKE has been shown to outperform the code produced by general-purpose and domainspecific compilers, and in some cases expert hand-written code.

Publications

STOKE has appeared in a number of publications.

- Stochastic Superoptimization ASPLOS 2013
- Data-Driven Equivalence Checking 00PSLA 2013
- Stochastic Optimization of Floating-Point Programs with Tunable
 Precision PLDI 2014
- Conditionally Correct Superoptimization 00PSLA 2015
- Stochastic Program Optimization CACM 2016
- Stratified Synthesis: Automatically Learning the x86-64 Instruction Set –
 PLDI 2016
- Sound Loop Superoptimization for Google Native Client ASPLOS 2017

STOKE: stochastic superoptimizer at

assembly level (x86_64)

Synthesis for Deobfuscation

Multiple approaches exist, **templates**, **stochastics** (e.g MCTS), **solver-based**, **enumerative** approaches, **search-based** (S-Metaheuristics) etc...

Greybox Synthesis

(design & principles of our algorithm)

Synthesis algorithm

Our algorithm is based on an **enumerative approach** backed by **symbolic execution** and a **synthesis** (itself based

on two sub-components)

Symbolic Execution

⇒ We use symbolic execution as a means of extracting **data-flow expressions** of registers or memory at arbitrary locations in the program. The symbolic execution can either be **static** or

Can backtrack expressions up to program entry

Avoid having to execute the program

AST

Assembly

Intermediate Representation

rax0	:=	rsi
rax1	:=	rax 0xFFFFFFFFFFFFFFFFF
rax2	:=	rax1 rdi
rcx0	:=	rdi
rcx1	:=	<pre>rcx0 * 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF</pre>
rcx2	:=	rcx1 & rsi
rdx0	:=	rdi
rdx1	:=	rdx0 & rsi
rdx2	:=	rdx1 OxFFFFFFFFFFFFFFFFFFF
rdi0	:=	rdi rsi
rax3	:=	rax2 + rcx2
rax4	:=	rax3 – rdx2
rax5	:=	rax4 + rdi0

Our synthesis algorithm

Blackbox vs Whitebox in Synthesis (for deobfuscation)

Blackbox

relates to approaches considering expressions to synthesize as blackboxes and only interacting with them through their input/ouput behavior

- + only influenced by semantic complexity
- large search space
- boolean result (fully synthesized or not at all)

(((((((a ∧ ¬b) + b) << 1) ∧ ¬ ((a ∨ b) – (a ∧ b))) << 1) – ((((a ∧ ¬b) + b) << 1) ⊕ ((a ∨ b) – (a ∧ b)))))

Whitebox

relates to approaches manipulating the semantic of the expression through its syntactic representation (usually the AST of the semantic)

- + the exact semantic is considered
- influenced by syntactic complexity
- enable sub-expressions synthesis

Blackbox I/O Synthesis Oracle

Pre-computed tables

Given a grammar with some **operators** (+, -, |, &, \oplus ..), and **variables** (a, b, c..), derives all possible expressions (up to a given bound) and evaluate them on V_{in} to obtain a function:

$$V_{out} \mapsto expr$$

V _{out}	expr
<1, 2, 5>	A + B
<-1,-4, 3>	A - B
<1, -1, 5>	A B
••••	

• generated once, and ensures O(log(n)) synthesis

Unsound but equivalence can be checked by SMT

⇒ What happens if it cannot synthesize the root node ?

Whitebox AST search

O If it cannot synthesize root node it aims at simplifying sub-expressions to obtain at least a partial synthesis (while with an I/O oracle the result is boolean).

O Thus an AST search algorithm will iterate through the graph looking for sub-nodes to synthesize.

Original strategy

Algorithm

- 1. Search a node to synthesize
- 2. if find one, replaces it by a temporary placeholder
- 3. if not, replaces it also
- 4. repeat the search until having substituted all nodes
- 5. recursively replace placeholders by the corresponding AST (synthesized or original)

This simplification strategy have some **complexity issues** (yet it provides optimal results)

New AST search strategies

Top-Down (Divide & Conquer)

Single **DFS** traversal of the AST. Ensures linearity of the simplification of the algorithm (while original one was quadratic in the worst case).

Top-Down & Bottom-Up

Like Top-Down but if a node gets synthesized attempts to re-synthesize its parents by means of reducing the variable cardinal.

Algorithm Visualization

Algorithm Visualization

Algorithm Visualization

Table generation

(aka generating a potent I/O oracle)

Table Generation

 \Rightarrow Table generation requires **evaluating millions** of expressions and keeping millions of V_{out} vectors to ignore identical ones (by construction we generate from smaller to larger expressions).

Improvements:

- Memoization of all evaluated expressions (thus A+B is evaluated only once for all, when combined with another expression like A+B-C the memoïzed result is reused for evaluation)
- JITTing of expressions evaluation. Evaluation made on native integers (not using Python). For that uses dragonFFI (could also have used numpy).

We now have a table with **375 million entries** (last year we had ~3 millions)

(Generated with a 235 GB RAM machine :p)

reach
25K exprs/sec

Table Storage

- Python object serialization module
- Requires loading the whole table
- Parsing is slow on large object

 \Rightarrow Ok for small tables but limited for larger ones

(format used by MSynth)

⇒ We also made a REST API (using FastAPI) to serve Level-DB database content

Q

⇒ Tables are limited by the enumerative approach, combining some variables (*a*, *b*, *c*..) with some operators (+, -, & ...). Thus no constants in sight. To improve expression diversity we performed two experiments.

Expression Linearization

Goal: Representing expressions as **normalized equations**. For that, uses SymPy a library for symbolic maths.

Driginal	Linearized				
a - (c - a)	2*a - c				
(a-b) - (a + a)	-a - b				
a + (b * b)	b² + a				
	•••				

Pros/Cons:

- introduces constants !
- annihilates generation performances
- introduces power operators
- only works on pure arithmetic expressions

we thus do not use it in practice

Expression Learning

Problem

What if the synthesized expression is larger than the one in input?

Expression Learning

Problem

What if the synthesized expression is larger than the one in input?

\Rightarrow We also now introduce simple constants in our table generation process

Benchmarks

Paper benchmarks

Comparison with Syntia

Simplification

	Ме	an expr. s	size	Si	mplificati	on	Mean scale factor		
	Orig	Obf _B	Synt	Ø	Partial	Full	Obf _S /Orig	Synt/Orig	
Syntia	/	/	1	52	0	448	/	/	
QSynth	3.97	203.19	3.71	0	500	500	x35.03	x0.94	

Orig, Obf_S, Obf_B, Synt are rsp. original, obfuscated (source, binary level) and synthesized exprs

Accuracy & Speed

	Semantic		Time								
		Sym.Ex	Synthesis	Total	per fun.						
Syntia	/	/	/	34 min	4.08s						
QSynth	500	1m20s	15s	1m35s	0.19s						

Against Tigress

Simplification

	Ν	lean expr.	size		Simplific	ation	Mean Scale factor		
	Orig	Obf _B	Synt	Ø	Partial	Full	Obf _S /Orig	Synt/Orig	
Dataset 2 EA	13.5	245.81	21.92	0	500	354 (70.80%)	x18.34	x1.64	
Dataset 3 VR-EA	13.5	443.64	25.42	0	500	375 (75.00%)	12	x1.90	
Dataset 4 EA-ED	13.5	9223.46	3812.84	5	234	133 (55.65%)	x405.25	x234.44	

Orig, Obf_s, Obf_b, Synt are respectively original, obfuscated (source, binary level) and synthesized expressions

Accuracy & Speed

	Semantic		Time									
	6	Sym.Ex	Synthesis	Total	per fun.							
Dataset 2	OK: 413	17-	1 40	0 40-	0.24-							
EA	KO: 4	Im/s	Tm42s	Zm49s	0.34s							
Dataset 3	OK: 401	17 10-	0	10	0.20-							
VR-EA	KO: 43	TITIUS	2m4os	SOCULAI	2.395							
Dataset 4 EA-ED	-	13m18s	2h7m	2h21m	35.47s							

⇒ Results were promising !

Benchmarks improvements

	Algorithm	Mean size	Si	mplificat	ion	Me	an Scale fac	tor	Tin		ne	
~	Evolution	Synt Expr.	Ø	Partial	Full	$\mathrm{Obf}_\mathrm{S}/\mathrm{Orig}$	$\mathrm{Synt}/\mathrm{Obf}_\mathrm{B}$	Synt/Orig	Sym.Ex	Synthesis	Total	per fun.
Dataset 1	Paper	3.71	0	500	500	x35.03	x0.02	x0.94	1m20s	15s	1 m 35 s	0.19s
Syntia	New	3.71	0	500	500	x35.03	x0.01	x0.94	57s	6s	64.05s	0.13s
	Mul	3.71	0	500	500	x35.03	x0.02	x0.94	54s	4s	59.50s	0.12s
	Concat	3.71	0	500	500	x35.03	x0.02	x0.94	60s	4s	64.90s	0.13s
	LDB	3.71	0	500	500	x35.03	x0.02	x0.94	60s	4s	64.91s	0.13s
	370M	3.85	0	500	471	x35.03	x0.02	x0.97	61s	4s	65.73s	0.13s
Dataset 2	Paper	21.92	0	500	354	x18.34	x0.17	x1.64	67s	1 m 42 s	2m49s	0.34s
$\mathbf{E}\mathbf{A}$	New	19.93	0	500	324	x18.34	x0.12	x1.49	37s	26s	63.89s	0.13s
	Mul	19.48	1	499	324	x18.34	x0.15	x1.45	37s	23s	60.59s	0.12s
	Concat	19.48	1	499	324	x18.34	x0.15	x1.45	39s	23s	62.71s	0.13s
	LDB	19.48	1	499	324	x18.34	x0.15	x1.45	40s	17s	58.39s	0.12s
	370M	17.37	2	498	343	x18.34	x0.13	x1.30	39s	16s	55.94s	0.11s
Dataset 3	Paper	25.42	0	500	375	-	x0.06	x1.90	17m10s	2m46s	19m56s	2.39s
VR-EA	New	75.14	14	486	296	-	x0.16	x5.61	11 m 55 s	36s	12m31s	1.50s
	Mul	73.98	18	482	296	3	x0.19	x5.52	$11 \mathrm{m} 46 \mathrm{s}$	35s	12m21s	1.48s
	Concat	21.50	0	500	324	-	x0.06	x1.60	12m2s	16s	12m18s	1.48s
	LDB	21.52	0	500	324	-	x0.06	x1.61	10m2s	8s	$10 \mathrm{m} 11 \mathrm{s}$	1.61s
	370M	19.07	0	500	346	2	x0.05	x1.42	9m57s	9 s	10m6s	1.21s
Dataset 4	Paper	3812.84	5	234	133	x405.25	x0.41	x234.44	13m18s	2h7m	2h21m	35.47s
EA-ED	New	483.26	0	239	133	x458.47	x0.03	$x35.87_{-}$	9m22s	2h19m	2h28m	37.29s
	Mul	375.36	0	239	133	x458.47	x0.04	x27.86	9m20s	1h34m	1h43m	26.01s
	Concat	375.36	0	239	133	x458.47	x0.04	$x27.86_{-}$	$9\mathrm{m}15\mathrm{s}$	1h21m	1h30m	22.88s
	LDB	375.45	0	239	133	x458.47	x0.04	$x27.87_{-}$	9m34s	1h16m	1h26m	21.64s
	370M	315.01	0	239	149	x458.47	x0.04	x23.38	9m30s	1h21m	1h30m	22.79s

Benchmarks improvements

Q	

		Algorithm	Mean size	Si	mplificat	tion	Mean Scale factor			Time			
Barray Original and the		Evolution	Synt Expr.	Ø	Partial	Full	Obf _S /Orig	$\mathrm{Synt}/\mathrm{Obf}_\mathrm{B}$	Synt/Orig	Sym.Ex	Synthesis	Total	per fun.
• Paper: Original results	Dataset 1	Paper	3.71	0	500	500	x35.03	x0.02	x0.94	1m20s	15s	1 m 35 s	0.19s
	Syntia	New	3.71	0	500	500	x35.03	x0.01	x0.94	57s	6s	64.05s	0.13s
		Mul	3.71	0	500	500	x35.03	x0.02	x0.94	54s	4s	59.50s	0.12s
		Concat	3.71	0	500	500	x35.03	x0.02	x0.94	60s	4s	64.90s	0.13s
		LDB	3.71	0	500	500	x35.03	x0.02	x0.94	60s	4s	64.91s	0.13s
		370M	3.85	0	500	471	x35.03	x0.02	x0.97	61s	4s	65.73s	0.13s
	Dataset 2	Paper	21.92	0	500	354	x18.34	x0.17	x1.64	67s	1 m 42 s	2m49s	0.34s
	EA	New	19.93	0	500	324	x18.34	x0.12	x1.49	37s	26s	63.89s	0.13s
• Svntia: ED + EA (very simple)		Mul	19.48	1	499	324	x18.34	x0.15	x1.45	37s	23s	60.59s	0.12s
 EA: EncodeArithmetic ⇒ 	r	Concat	19.48	1	499	324	x18.34	x0.15	x1.45	39s	23s	62.71s	0.13s
MDA		LDB	19.48	1	499	324	x18.34	x0.15	x1.45	40s	17s	58.39s	0.12s
		370M	17.37	2	498	343	x18.34	x0.13	x1.30	39s	16s	55.94s	0.11s
• VR-EA: Virtualization + EA	Dataset 3	Paper	25.42	0	500	375	-	x0.06	x1.90	17m10s	2m46s	19m56s	2.39s
• EA-ED: EA + EncodeData	VR-EA	New	75.14	14	486	296	-	x0.16	x5.61	11m55s	36s	12m31s	1.50s
		Mul	73.98	18	482	296	-	x0.19	x5.52	11 m 46 s	35s	12m21s	1.48s
		Concat	21.50	0	500	324	-	x0.06	x1.60	12m2s	16s	12m18s	1.48s
	Ν	LDB	21.52	0	500	324	-	x0.06	x1.61	10m2s	8s	10m11s	1.61s
		370M	19.07	0	500	346	-	x0.05	x1.42	$9\mathrm{m}57\mathrm{s}$	9s	10m6s	1.21s
	Dataset 4	Paper	3812.84	5	234	133	x405.25	x0.41	x234.44	13m18s	2h7m	2h21m	35.47s
	EA-ED	New	483.26	0	239	133	x458.47	x0.03	x35.87	9m22s	2h19m	2h28m	37.29s
		Mul	375.36	0	239	133	x458.47	x0.04	x27.86	9m20s	1h34m	1h43m	26.01s
		Concat	375.36	0	239	133	x458.47	x0.04	$\mathbf{x27.86}_{-}$	9m15s	1h21m	1h30m	22.88s
		LDB	375.45	0	239	133	x458.47	x0.04	$\mathbf{x27.87}_{-}$	9m34s	1h16m	1h26m	21.64s
	·	370M	315.01	0	239	149	x458.47	x0.04	$\mathbf{x23.38}$ _	9m30s	1h21m	1h30m	22.79s

Benchmarks improvements

	Algorithm	Mean size	Si	mplificat	ion	Me	an Scale fac	tor		Tin	ne	
	Evolution	Synt Expr.	Ø	Partial	Full	$\mathrm{Obf}_\mathrm{S}/\mathrm{Orig}$	$\mathrm{Synt}/\mathrm{Obf}_\mathrm{B}$	Synt/Orig	Sym.Ex	Synthesis	Total	per fun.
Dataset 1	Paper	3.71	0	500	500	x35.03	x0.02	x0.94	1m20s	15s	1 m 35 s	0.19s
\mathbf{Syntia}	New	3.71	0	500	500	x35.03	x0.01	x0.94	57s	6s	64.05s	0.13s
	Mul	3.71	0	500	500	x35.03	x0.02	x0.94	54s	4s	59.50s	0.12s
	Concat	3.71	0	500	500	x35.03	x0.02	x0.94	60s	4s	64.90s	0.13s
	LDB	3.71	0	500	500	x35.03	x0.02	x0.94	60s	4s	64.91s	0.13s
	370M	3.85	0	500	471	x35.03	x0.02	x0.97	61s	4s	65.73s	0.13 s
Dataset 2	Paper	21.92	0	500	354	x18.34	x0.17	x1.64	67s	1m4 2 s	2m49s	0.34s
E A	Now	19.93	0	500	324	x18.34	x0.12	x1.49	37s	265	63.89s	0.13s
letter avera	ge 🛛	19.48	1	499	324	x18.34	x0 Sn	ood		23s	60.59s	0.12
implificatio	n ^{at}	19.48	1	499	324	x18.34	x0	eeu		23s	62.71s	0.13
····		19.48	1	499	324	x18.34	x0 im	proven	nent	17s	58.39s	0.12s
nan original		17.37	2	498	343	x18.34	^{x0} rai	naina f	rom	16s	55.94s	0.11s
nplementat	tion	25.42	0	500	375	-	x0	0/ +0 67	10/	m46s	19m56s	2.39s
90% for EA-ED) 1	75.14	14	486	296	-	x0	% 10 67	/0	36s	12m31s	1.50s
	Mui	73.98	18	482	296	÷	x0.19	x5.52	11m46s	354	12m21s	1.48s
	Concat	21.50	0	500	324	-	x0.06	x1.60	12m2s	16s	12m18s	1.48s
	LDB	21.52	0	500	324	-	x0.06	x1.61	10m2s	8s	10m11s	1.61s
	370M	19.07	0	500	346	-	x0.05	x1.42	$9\mathrm{m}57\mathrm{s}$	9s 🕇	10m6s	<1.21s
Dataset 4	Paper	3812.84	5	234	133	x405.25	x0.41	$\mathbf{x234.44}_{-}$	13m18s	2h7m	2h21m	35.47s
EA-ED	New	483.26	0	239	133	x458.47	x0.03	$x35.87_{-}$	9m22s	2h19m	2h28m	37.29s
	Mul	375.36	0	239	133	x458.47	x0.04	x27.86	9m20s	1h34m	1h43m	26.01s
	Concat	375.36	0	239	133	x458.47	x0.04	$\mathbf{x27.86}_{-}$	9m15s	1h21m	1h30m	22.88s
	LDB	375.45	0	239	133	x458.47	x0.04	$\mathbf{x27.87}_{-}$	9m34s	1h16m	1h26m	21.64s
	370M	315.01	0	239	149	x458.47	x0.04	x23.38	9m30s	1h21m	1h30m	22.79s

Implementation

(in the QSynthesis utility)

QSynthesis

IDA Integration

	🕴 XG 🔺 🔍 🖬 🖬 🖬 🖓 ⊀ 🖬	X IN Construction No debugger - 16 C			
					¥
Library function 📕 Regular function 📕 I	nstruction 📗 Data 📕 Unexplored 📕 External s	ymbol 📕 Lumina function			
unctions window	DA View-A, QSynthesis, Synth	esized AST, Triton AST 🗶 👩 Hex View-1 🗶 🖪	Structures 🗶 🖽 🕴	inums 🗶 🛐 Imports 🗶	Exports X
tion name	A IDA View A				
init_proc	LE IDA VIEWA			Synthesis X Synthesized AST	Triton AST X
ub_401020		mov rdx, rax			
printf		and rax, [rbp+var_18]		QS	ynthesis
atoi		add rax, rax	Synthe	is configuration	
exit		sub rcx, rax			
start		mov rax, [rbp+var_8]	From:	0x4011a2 To: 0x40128	a Target: REG 👻 RAX
dl_relocate_static_pie		lea rdx, [rax+rax]	Table	LEVELDB - /tmp/lts/final table leveldb	
eregister_tm_ciones		mov rax, [rbp+var_20]			
Igister_tm_clones		sub rdx, rax	Algori	thm: Top-Down - Type: FULL_SYMBOLIC	FULL_SYMBOLIC +
_do_global_dtors_aux		mov rax, rdx			
arret 344		not rax			
arget_344		Poss cosh u poti por		Run Triton	Run Synthesis
arget 362		Reassembly options		Node county Double	Simplified: Yes
arget 120	×	patch function bytes		Node counc Depth	Synthesiszed Expression
12 -(722	F	shrink function		124 12	((((rcx + rdi)) & rdi) ^ ((rdx
13 01 522		move some instruction instead of filling	with NOPs.		rdi)))
raph overview		Can break disassembly for relative instru	ctions. (Works only for linear blocks)	Inputs	
		Snapshot database before patching			Node count Depth Scale
			OK Cancel	rdi 64	Node count Deptil Deale
			Cancer	rcx 64	9 4 -92.74%
		mov rax, [rbp+var_8]		and a second	
Y		and rax, [rbp+var_18]		rdx 64	
· · · ·		add rax, rdx			
Ç Ç		not rax			
يطي يلے		add rax, rax			
ň Č Č		sub rcx, rax			
		sub rax, 1			
<u> </u>		pop rbp			
		:) // starts at 4011A2			
		target_77 endp			
				lighlight Deps Show AST	Show AST Reassemble
	100.00% (-334,594) (743,326	0000128A 00000000040128A: target_77+E8 (Synchronize)	d with Hex View-1)		
utput window					F
/ cmp/obruscuced nus been succ	essivity touged into the ducubuse.				
is analysing the input file may start to explore the input f	ile right now.				
hon 3.9.1+ (default, Feb 5 2021, 7 10.2.1 202101101	13:46:56)				
ython 64-bit v7.4.0 final (seria	1 0) (c) The IDAPython Team <idapython< td=""><td>@googlegroups.com></td><td></td><td></td><td></td></idapython<>	@googlegroups.com>			
tion argument information has be	en propagated				
ina: applied metadata to 3 functi	ons.				
THE REPORT OF THE PARTY NEW CAR DOOD TI	LA BURNER -				

AU: idle Down Disk: 2GB

Use-Cases

(getting our hands dirty!)

Attacking YANSOIlvm

Transforms:

- VM: transforms basic operators
 - (+, \oplus ..) with function calls
- Merge: merges all internal linkage functions in a single one
- Flattening: CFG flattening
- Connect: splits basic blocks and uses switch to add false branches
- ObfCon: obfuscates constants with MBAs
 - BB2func: splits & extracts basic blocks in new functions
 - **ObfCall**: changes internal linkage function calling convention

🐉 master 👻 🐉 1 branch 🚫 0 tags	Go to file 💆 Code 👻	About
emc2314 Update README.md	1001331 on Jun 20, 2020 🕚 65 commits	Vet Another Not So Obfuscated LLVM
EADME.md		Readme
YANSOIlvm		Poloco
Yet Another Not So Obfuscated LLVM		Releases
LLVM Version		Packages
Based on the release version $9.0.1$. Other version might work as well, but code.	t one has to merge/rebase the X86 related	No packages published
Build	Languages	
wget https://github.com/llvm/llvm-project/releases/download/l tar xf llvm-9.0.1.src.tar.xz && cd llvm-9.0.1.src git init git remote add origin https://github.com/emc2314/YANSOllvm.gi	lvmorg-9.0.1/llvm-9.0.1.src.tar.xz t	C++ 94.1% Python 3.2% CMake 2.4% C 0.3%

https://github.com/emc2314/YANSOIlvm

⇒ There are plenty of other Obfuscator-LLVM derivatives used in the wild

YANSOIIvm: VM obfuscation

⇒ We then could go further by removing calls and replacing them by the operation directly

YANSOIlvm: MBA used

OpaqueConstant

- ((~x | 0x7AFAFA69) & 0xA061440) + ((x & 0x1050504) | 0x1010104) == 185013572
- p1*(x|any)**2 != p2*(y|any)**2
- $x + y = x^{y} + 2^{x}(x \& y)$
- $x \cdot y = (x | -y) 3 \cdot (-(x | y)) + 2 \cdot (-x) y$

MBAs

x + y	(x ~y) + (~x & y) - (~(x & y)) + (x y)
х – у	x + ~y + 1
х << у	/
x >a y	/
x >l y	/
х & у	$-(\sim(x\&y)) + (\sim x y) + (x\&\sim y)$
х у	(x^y) + y - (~x&y)
х ^ у	x + y - ((x&y) << 1)

About MBA & constants:

expression using constants:	a & 0xdeadbeef	⇒	* tables do not contains constants
constants:	0xd00dfeed	⇒	✓ can synthesize it !

Example: Opaque Constant

blackbox I/O optimization

If the evaluation of all inputs produces the same output, thus the expression encodes a constant.

push	rbp
mov	rbp, rsp
mov	edx, edi
not	edx
mov	eax, edx
or	eax, 0A021040h
and	eax, 0A061440h
mov	ecx, edi
and	ecx, 40400h
lea	eax, [rcx+rax+1010104h
mov	r9d, eax
xor	r9d, 0B071544h
mov	esi, r9d
or	esi, edx
mov	edx, r9d
or	edx, edi
not	edx
lea	r8d, [rdx+rdx*2]
mov	edx, eax
xor	edx, 74F8EABBh
add	edx, edx
sub	edx, edi
mov	ecx, r9d
xor	ecx, edi
sub	ecx, esi
add	ecx, r8d
xor	ecx, edx
mov	edx, ecx
add	edx, 9054CB9h
xor	eax, edx
xor	eax, 20259FCh
lea	rax, [rax+rax+0Fh]
and	rax, OFFFFFFFFFFFFFFFFF
mov	r8, rsp
sub	r8, rax
mov	rsp, r8
or	ecx, OEEh
movzx	eax, cl

imul	eax, eax
imul	esi, eax, 37F1h
xor	edx, edx
mov	eax, esi
sub	eax, 203D2640h
setz	dl
neg	edx
xor	edx, 0F88BA899h
mov	r10d, esi
or	r10d, 0DFC2D9BFh
mov	eax, esi
not	eax
mov	ecx, eax
and	ecx, ODFC2D9BFh
lea	ecx, [rcx+rcx*2]
lea	eax, [rax+rax-203D2640h
xor	esi, 203D2640h
sub	esi, r10d
add	esi, ecx
xor	esi, eax
mov	eax, esi
xor	eax, OBDC2BA9h
imul	edx, eax
lea	rcx, ds:0Fh[rdx*8]
and	rcx, OFFFFFFFFFFFFFFFFh
mov	rax, rsp
sub	rax, rcx
mov	rsp, rax
mov	[rax], rdi
mov	r10, [rax]
mov	ecx, esi
add	ecx, r9d
mov	edx, esi
xor	edx, r9d
sub	ecx, edx
and	esi, r9d
shl	esi, 1
xor	ecx, esi
mov	ecx, ecx
cmp	r10, rcx
setz	cl
test	cl, 1

short loc_401D60

jnz

Value synthesized

0x0 \Rightarrow

Windows Warbird

Q

⇒ Part of the Windows kernel is known to be obfuscated with a framework called Warbird. More specifically **PatchGuard** features are obfuscated. We gave a very quick look at the PatchGuardInit function.

Windows Warbird

⇒ Deobfuscating it would require a deeper understanding of the function and more time!

(more detailed analyses of Warbird here & here)

Messaging Application

Messaging Application

LOC_9B7AEC	V9 80-6368897580330097
SMITT	X14 X24 X8
MOV	W9 #0x5000
ASR	X15 X14 #0x19
MOVK	W9. #0x526.LSL#16
ADD	X14, X15, X14, LSR#63
MSUB	X14, X14, X9, X24
MOV	X10, #0x770F
AND	X9, X9, X14, ASR#63
MOVK	X10, #0xF608,LSL#16
ADD	X23, X9, X14
MOVK	X10, #0xB272, LSL#32
SUB	X9, X24, X23
MOVK	X10, #0x45E7,LSL#48
MOV	X11, #0x4925
MOV	X13, #0xF303
SMULH	X8, X9, X8
MOVK	X11, #0x2492, LSL#16
MOVK	X13, #0x4A29, LSL#16
SMULH	X10, X23, X10
ASR	X14, X8, #0x19
MOVK	X11, #0x9249,LSL#32
MOV	W12, #0x2710
MOVK	X13, #0x81E3,LSL#32
ASR	X9, X10, #0xE
ADD	X26, X14, X8,LSR#63
MOVK	X11, #0x4924,LSL#48
MOVK	X13, #0x92FD,LSL#48
ADD	X24, X9, X10,LSR#63
ADD	X8, X26, #4
MUL	X9, X26, X12
SMULH	X10, X8, X11
SMULH	X11, X9, X13
ASR	X12, X10, #1
ADD	X11, X11, X9
ADD	X10, X12, X10, LSR#63
ASK	AIZ, AII, WURIS
ADD	X11, X12, X11, LSR#63
CUP	V10 V10 V10 TELES
MOUN	N10, A10, A10, L5L#3
ADD	V0 V0 V10
erp	X8 (SP #0xB0+war B01
MULT	X8 X11 X12
SUB	X9 X9 X8
AND	X9 X12 X9 ASP#63
SUB	X8. X8. X9
SMULH	X9, X8, X13
VOM	X28, #0xD70B
ADD	X8, X9, X8
MOVK	X28, #0x70A3, LSL#16
ASR	X9, X8, #0x15
MOVK	X28, #0xA3D, LSL#32
ADD	X8, X9, X8, LSR#63
MOV	W27, #0x16D
MOVK	X28, #0xA3D7, LSL#48
MOV	W21, #0x64 ; 'd'
ADD	X20, X8, #0x7B2
MOV	W25, #0x190
B	Loc 9B7BF8

 \Rightarrow We managed to synthesize many MBAs (but as usual it is mixed with other transformations and we do not really know what we are synthesizing)

Conclusion

QSynthesis Conclusion

Greybox algorithm

The greybox algorithm strongly **reduces** the need for huge tables and enable opportunistically **synthesizing sub-expressions**

(thus tables shall be more *representative* than exhaustive introducing constants etc)

Next plans

• Breaking MBA using constants (we have ideas on mechanisms that can be integrated within the synthesis algorithm but with some ad-hoc checks)

O Restoring original simplification algorithm potency (by fixing some complexity induced by Triton)

O Breaking the obfuscation is crucial as it is the first step before further reversing

O Synthesis only help on a sub-part of the deobfuscation process:

- it addresses PB#2: deobfuscating a data-flow expression
- but **do not** addresses PB#1: **locating the data** to deobfuscate

• We do use these techniques to **assess** and continuously **improve** the strength of our own obfuscator (*Quarks AppShield*)

 (As usual) what makes obfuscation potent is carefully mixing obfuscation passes

Acknowledgement

- O Luigi Coniglio how kickstarted that approach in our dynamic tracing framework Qtrace ☑
- Jonathan Salwan that tweaked Triton to make it more efficient on this kind of use-cases
- My Quarkslab's colleagues, and people of the synthesis community with whom I had stimulating discussions

Thank you ! Q & A

rdavid@quarkslab.com

@RobinDavid1

