
Greybox Program Synthesis: A
New Approach to Attack
Obfuscation

Robin David

2021-04-08

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Contents

I. Introduction 3

II. Background 3
a. Program Synthesis Primer . 3
b. Previous Research . 5

III. Synthesis Algorithm 6
Original Search Strategy . 7
Top-Down Search Strategy . 7
Top-Down & Bottom-Up Strategy . 8
Visualizing Simplification . 8
Beyond Dynamic And Symbolic Execution . 9

IV. Table Generation 10
JITTing Expression Evaluation . 11

Generation Throughput . 12
Google Level-DB Against Pony-ORM . 12
Expression Linearization . 13
Expression Learning . 15

V. Benchmarks 16

VI. Implementation in QSynthesis 18
Reassembly . 18
IDA Integration . 19

VII. Real-World Examples 19
YANSOLLVM . 19
Warbird Framework . 23
Messaging Application . 25

VIII. From Deobfuscation to Software Diversification 27

IX. Conclusion 28

Robin David 2

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

I. Introduction

Program obfuscation is getting more and more exposure, and consequently ap-
proaches to defeat them as well. While control-flow obfuscation attracted attention
the last few years, fewer approaches focused on dataflow. Program synthesis ap-
pears to be a promising approach to target this kind of obfuscation. This whitepaper
aims first at introducing broad principles and its application to obfuscation. Then
we will show all advances made at Quarkslab on our approach since the publica-
tion of the first results1 at the Binary Analysis Workshop 2020 (collocated with
NDSS). That will be the opportunity to get more into details, on the implementation
and experiments performed since to improve the algorithm, and especially, its
performances and scalability.

More specifically, a focus will be given to our "Greybox Synthesis" algorithm combin-
ing a pure black-box I/O based synthesis (relying on precomputed expressions) with
a search algorithm on the semantic (white-box aspect). The semantic is obtained
through symbolic execution thanks to the Triton framework. Various extensions like
linearization or learning will be presented as well as updated benchmarks results.

We will then discuss how to deobfuscate various cases embedding various obfusca-
tion like MBA2 or VM using QSynthesis. Then an overview of the IDA integration
will be shown with an end-to-end deobfuscation starting from obfuscated code up
to to reassembled clear instructions.

II. Background

a. Program Synthesis Primer

Program Synthesis is the mean of generating a program given the expected behavior
via a specification of it. Such approach found multiple usages3, especially in opti-
mization4 and deobfuscation (our use-case). As shown on Figure 1, in the context of

1QSynth - A Program Synthesis based approach for Binary Code Deobfuscation Robin David
(Quarkslab), Luigi Coniglio (University of Trento), Mariano Ceccato (University of Verona)
https://archive.bar/pdfs/bar2020-preprint9.pdf

2Yongxin Zhou, Alec Main, Yuan Xiang Gu, Harold Johnson: Information Hiding in Software with
Mixed Boolean-Arithmetic Transforms. WISA 2007: 61-75

3Sumit Gulwani, Oleksandr Polozov, Rishabh Singh Program Synthesis https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

4S. Bansal and A. Aiken, “Automatic generation of peephole superopti-mizers,” in Proceedings of
the 12th International Conference on Archi-tectural Support for Programming Languages and

Robin David 3

https://triton.quarkslab.com
https://archive.bar/pdfs/bar2020-preprint9.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

program synthesis the specification is the semantic of the program itself that
we usually want to preserve through synthesis. The only additional specification
parameter is the intended goal e.g. a faster program, a cleaner program that we
will call the fitness function for the rest of the article. So a synthesizer is a program
generating or rewriting new programs.

Figure 1: Abstract functional view of synthesis.

Programs considered in this research are not programs as we are used to manipulate
and to execute but a more abstract definition of it. The Figure 2 shows some
elementary "classes" of programs that incrementally bring a load of complexity to
handle and thus to be synthesized.

Figure 2: Schematic classes of program structure complexity.

The input program can be of arbitrary complexity, but the synthesis is usually bound
to a certain class which is usually sequential programs also referred as "loop-free
Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, 2006, pp. 394–403.
https://theory.stanford.edu/~aiken/publications/papers/asplos06.pdf

Robin David 4

https://theory.stanford.edu/~aiken/publications/papers/asplos06.pdf

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

programs"5. Thus, input programs essentially require to be of the same class
to be successfully synthesized (it is rather improbable to synthesize a sequential
program if the original contains branching conditions as the semantic would not
be preserved). Consequently we don’t consider the whole program but usually
sequential sub-parts of it.

A sequential program, is a set of instructions (not necessarily contiguous) which
link inputs to outputs through the semantic of instructions. A dataflow expression
is thus obtained for each output which is usually represented as a first-order logic
expression on bitvectors. An expression is structured as an AST (Abstract-Syntax-
Tree). For the rest of the article, we will refer to them as "expressions".

To summarize, the synthesizer will intend to synthesize expressions with some
objective functions (or "fitness" function). Applied on deobfuscation the fitness
function will be to obtain expressions as tight as possible (fitness seems really
appropriate in this context :)).

For a broader view of synthesis, existing approaches and application, there are
other interesting publication in the literature678. Next section dives in previous
research applied on obfuscation.

b. Previous Research

Applied on optimization, a reference publication is Souper9, but let’s focus here
on binary-level synthesis applied to reverse-engineering and more specifically
deobfuscation. A pioneer in this field is Rolf Rolles10. He presented an enumerative
approach for CPU emulator synthesis and peephole deobfuscation, as well as a
template-based approach for metamorphic extraction. All three were inspired from

5Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of loop-free
programs. In ACM SIGPLAN Notices, volume 46, pages 62–73. ACM, 2011.

6https://www.cs.utexas.edu/~bornholt/post/synthesis-explained.html
7https://courses.cs.washington.edu/courses/cse507/14au/index.html https://www.youtube.com/wa
tch?v=KpDyuMIb_E0&ab_channel=ClojureTV

8https://fitzgeraldnick.com/2020/01/13/synthesizing-loop-free-programs.html
9Raimondas Sasnauskas and Yang Chen and Peter Collingbourne and Jeroen Ketema and Gratian
Lup and Jubi Tanejaand John Regehr Souper: A Synthesizing Superoptimizer, 2017 https://arxiv.or
g/pdf/1711.04422.pdf

10Rolf Rolles, Program synthesis in reverse engineering, in No Such Conference Paris, France, 2014
https://www.msreverseengineering.com/s/Program-Synthesis-in-Reverse-Engineering.pdf

Robin David 5

https://www.cs.utexas.edu/~bornholt/post/synthesis-explained.html
https://courses.cs.washington.edu/courses/cse507/14au/index.html
https://www.youtube.com/watch?v=KpDyuMIb_E0&ab_channel=ClojureTV
https://www.youtube.com/watch?v=KpDyuMIb_E0&ab_channel=ClojureTV
https://fitzgeraldnick.com/2020/01/13/synthesizing-loop-free-programs.html
https://arxiv.org/pdf/1711.04422.pdf
https://arxiv.org/pdf/1711.04422.pdf
https://www.msreverseengineering.com/s/Program-Synthesis-in-Reverse-Engineering.pdf

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

earlier academic work111213.

Lately, Tim Blatzyko proposed Syntia14, a synthesis approach based on a stochastic
search using Monte-Carlo-Tree-Search (MCTS) to find expressions with equivalent
I/O behavior given a set of I/O pairs. The algorithm is deriving an expressions
up until finding one having the exact same I/O behavior. For a given program
(expression) the synthesizer result is thus essentially boolean on whether a program
is found or not.

These two synthesizers are targeting various dataflow based obfuscations which are
also the target of our study and our synthesizer. Many other interesting publications
discuss synthesis but not specifically applied on obfuscation15.

On our side, preliminary results have been presented on Quarkslab blog16 in the
context of our dynamic trace analysis framework analysis. Later, academic results
were presented at BAR17. Since, it once again changed significantly as we explored
new simplification strategies and multiple other improvements.

III. Synthesis Algorithm

An accurate description of the greybox synthesis algorithm is the following:

Offline enumerative synthesis approach guided by an AST semantic search
strategy.

Behind this enigmatic definition lays two main components:

11S. Bansal and A. Aiken, “Automatic generation of peephole superopti-mizers,” in Proceedings of
the 12th International Conference on Archi-tectural Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, 2006, pp. 394–403.
https://theory.stanford.edu/~aiken/publications/papers/asplos06.pdf

12Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of loop-free
programs. In ACM SIGPLAN Notices, volume 46, pages 62–73. ACM, 2011.

13Patrice Godefroid and Ankur Taly. Automated synthesis of symbolic instruction encodings from i/o
samples. In ACM SIGPLAN Notices, volume 47, pages 441–452. ACM, 2012. http://theory.stanfor
d.edu/~ataly/Papers/pldi12.pdf

14Tim Blazytko and Moritz Contag and Cornelius Aschermann and Thorsten Holz Syntia: Synthesizing
the Semantics of Obfuscated Code 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver

15Sumit Gulwani, Oleksandr Polozov, Rishabh Singh Program Synthesis https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

16https://blog.quarkslab.com/exploring-execution-trace-analysis.html
17QSynth - A Program Synthesis based approach for Binary Code Deobfuscation Robin David
(Quarkslab), Luigi Coniglio (University of Trento), Mariano Ceccato (University of Verona)
https://archive.bar/pdfs/bar2020-preprint9.pdf

Robin David 6

https://theory.stanford.edu/~aiken/publications/papers/asplos06.pdf
http://theory.stanford.edu/~ataly/Papers/pldi12.pdf
http://theory.stanford.edu/~ataly/Papers/pldi12.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf
https://blog.quarkslab.com/exploring-execution-trace-analysis.html
https://archive.bar/pdfs/bar2020-preprint9.pdf

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

• The offline enumerative synthesis approach which given an expression
provides a synthesized expression using a standard I/O based synthesis. The
peculiarity is the offline enumeration which means that all possible programs
will be derived (up to a given size/depth) once and for all. They are thus
precomputed when it comes to synthesizing an expression. Syntia has to
perform the derivation for each expression it has to simplify. We call it "online"
in opposition to precomputed approach which is "offline". All precomputed
expressions are stored in a database described hereafter.

• The AST semantic search strategy which given a program dataflow ex-
pression represented as an AST will first try to synthesize the root node. If
unsuccessful, it will iterate the AST to opportunistically trying to synthesize
sub-ASTs. This provides a good trade-off with the boolean aspect of the I/O
synthesis. It is the whitebox aspect of the algorithm as it manipulates the
semantic of the expression. A shortcoming is that the search is impacted by
the syntactic complexity of the AST and thus the obfuscation itself. To address
this issue, various search strategies are described below.

Original Search Strategy

The original search strategy was an iterative random-walk BFS search iterating the
AST up until finding synthesizable sub-tree. Every time a sub-tree is successfully
synthesized it is replaced by a placeholder node acting as a new variable in the
expression. The simplification search was repeated up until the AST has been
reduced to a single node or no replacement took place during an iteration. After
that, all placeholder variables were replaced by the effective AST yielding the
synthesized expression.

A graph animation of the algorithm is available: here.

This approach appeared to be the most efficient one in terms of AST sizes reduction.
But it implies always restarting from the root node and all editions of the AST comes
at some costs (due to internal Triton representation). On large ASTs the complexity
quickly raises making the algorithm very slow. Even if providing optimal results in
terms of expression sizes, the runtime complexity was a strong limitation.

Top-Down Search Strategy

This approach is the more instinctive as it iterates the whole AST once in a DFS
manner and substitute any sub AST that can be synthesized. This algorithm is thus

Robin David 7

https://www.youtube.com/watch?v=ID_PEVseecI

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

truly O(n) with n the number of AST nodes.

A graph animation of the algorithm is available: here.

Experimentally, results have shown not to be optimal as it cannot perform recursive
simplification. Also, it does not take advantage that parts of the expression might be
identical (where some temporary abstraction can be made as in previous strategy).

Top-Down & Bottom-Up Strategy

This strategy is a variant of the first one trying to reduce some complexity bottle-
necks while keeping some synthesis potency. In this algorithm, the search does not
restart from the root node each iteration. Instead, the search is implemented as a
BFS from the root node followed by a BFS from leaves to the root node.

A graph animation of the algorithm is available: here.

The intuition is the following, if a node get synthesized, one of its parents nodes
might become synthesizable by means of reducing the number of variables involved
in the computation. For example, if an expression contains 4 variables but precom-
puted tables used only contain 3 variables no lookup can be performed. But if the
synthesis reduces the expression to 3 variables then it enables synthesizing the
node.

Visualizing Simplification

For a given synthesized expression, it is somewhat difficult to assess the implication
of the AST search. Indeed, it is difficult to know whether a single sub-AST has been
simplified or multiple smaller ones. Such question does not arise for black-box
synthesis as only the root node can be simplified. To answer this question we
made a simple tool enabling visualizing the search on the obfuscated expression
AST and simplifications that takes place. The Figure 3 below shows the synthesis
search on 3 different expressions ranging from a few hundred nodes to more than
100k nodes. One can see that even though the root node cannot be synthesized
all at once the search and the synthesizer enables simplifying many sub-graphs
in the expression resulting in more understandable expressions! Green nodes are
synthesized sub-ASTs at the end of the process.

Robin David 8

https://www.youtube.com/watch?v=VQRg3LHC6Lw
https://www.youtube.com/watch?v=G1lBOqmwLaI

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Figure 3: Visualization of ASTs before and after synthesis (on three expressions).

Beyond Dynamic And Symbolic Execution

Our previous work retrieved obfuscated expressions through Dynamic Symbolic
Execution, and thus on execution trace. At a given location, it enables computing
easily the expression by backtracking backward on its dependencies up to the first
instruction executed. Nonetheless, the synthesis algorithm is not bounded to this
context. As the input of the algorithm is an expression AST, it can be computed from

Robin David 9

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

any analysis technique symbolic execution or not, it can originate from another
intermediate represent or be computed entirely statically.

In our context, it can also be performed on static path which emancipate the
algorithm from having to run the target concretely and set it free from reaching
the given location. It implies to perform fake loading and initialization of the Triton
symbolic state. However it works fairly well, especially on this kind of obfuscation
where most instructions are computational ones (not calling external APIs doing
memory operations). The main difference is that every register or memory area
firstly read (without having been previously written) will be symbolized inducing
an overhead of symbolic variables.

IV. Table Generation

Pre-computed tables are the cornerstone of this approach, they have to be as
diversified and representative as possible. Even though the generation has to be
performed only once, we tried to make generation efficient, compact on disk, and
more than everything, keeping logarithmic accesses in the database. This section
will drive you through the process of building a table design that scale for both
generation and lookup.

From an abstract point of view, tables provide the mapping between N variables
of a given size to a program (an expression) of a given size. Let’s call domain the
type of input variables and the associated output size. This signature of a table can
be defined by: {Na, N b..} 7→ N with a set of input variables of various sizes (a, b)
and yield an expression of size N . As such, an expression to synthesize belongs to
a specific domain and can only be resolved with a table of the same domain. For
most of the following experiments, we consider the 3.N64 7→ N64 domain containing
up to 3 variables of size 64 yielding a result on 64 bits.

Given a set of variables and a set of operators (+, -, *, ..), tables are derived by ap-
plying recursively all operators on all combinations of variables18. Each expression
generated is then evaluated on a set of inputs (Y valuations of all variables) which
provide a vector of output values (array of integers). This array is then hashed and
this hash forms the key to access such expression. Any other expression gener-
ated the same by means of evaluating it on the same inputs would be considered
semantically equivalent. The whole database is generated from the smallest to the

18The complexity of that process is very boldly exponential.

Robin David 10

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

biggest expression ensuring optimality of the size (wrt. to variables and operators).
As such, during the generation process, if an expression generates the same hash
as a previous one it will be dropped as it is necessarily bigger.

Table generation is a very intensive process as it implies to evaluate an expression
on a vector of input values. Thus the generation memoize intermediate results to
never re-evaluating a given sub-AST twice. For instance, if (a+b) and (c-b) generate
respectively the output vectors V 1 and V 2. Once combined with another operator
let’s say +, each vector items will be evaluated two by two (V 1[i] + V [i]) yielding the
output vector associated to (a+b)+(c-b). That evaluation is the most time-consuming
operation but the memoization makes it very efficient.

JITTing Expression Evaluation

Table generation is made in Python, which is an order of magnitude slower than
compiled languages and not trivially simulate low-level arithmetic operations on
bounded integers (with overflows, etc.). We used dragonffi an awesome jitting
engine backed by LLVM available in open-source19 . That will enable us to perform
native integer operations and performs all vector operations in native to limit
goings and comings from Python and native world. The snippet below shows how
to perform a function that will increment all uint64 of an array by one and how to
call it from Python.

FFI = pydffi.FFI()
N = 10
ArTy = FFI.arrayType(FFI.ULongLongTy, N)

ar = ArTy() # values are random

CU = FFI.compile('''
#include <stdio.h>
#include <stdint.h>
void inc(uint64_t* buf, size_t n)
{

for(int i=0; i < n; i++) {
buf[i] = buf[i] + 1;

}
}
''')

CU.funcs.inc(pydffi.ptr(ar), 10)

19https://github.com/aguinet/dragonffi

Robin David 11

https://github.com/aguinet/dragonffi

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

For generation, all operators are thus jitted with the appropriate arrays length
and integer size. The table below shows an example for generating a database of
1.535.467 entries jitting without and with array. Pure python implementation is
even slower.

JIT JIT-array

RAM (16GB) 27.6% 7.4%

Time (in s) 1m29s 30s

Generation Throughput

At the moment the largest table generated contains 374,726,312 entries and
the generation took 244m27s on a machine with 235GB of RAM. The average
throughput is thus 25,548 entries per second. It only considers the generation
time. Writing the table on disk takes a bit of time.

Google Level-DB Against Pony-ORM

Tables were first pickle files, but as they have grown we switched to ponyorm20 a
fast and lightweight ORM for Python to store entries using the hash as a primary
key. However it turned out not to scale to such a high number of entries as insertion
seems linear in the number of entries. Not making hashes as key makes the lookup
slow as hell. As tables are basically key-value pairs where the key is the hash of the
output vector and value is the expression string, we focused on key-value databases.
Multiple of them exists like Berkley-DB21, Level-DB22 by Google or RocksDB23 by
Facebook. Among them we choose Level-DB.

Such database store keys as tries (or similar) which satisfy our needs to have a
logarithmic lookup (in the number of entries). The time taken to query an entry
between PonyORM SQLite (with hashes as primary keys)24 and level-DB is the
following:

20https://ponyorm.org/
21https://github.com/berkeleydb/libdb
22https://github.com/google/leveldb
23https://github.com/facebook/rocksdb
24Hashes as primary keys does not scale at all, as the insertion is linear in the number of entries.
Generating tables with such mechanisms basically does not scale for large tables.

Robin David 12

https://ponyorm.org/
https://github.com/berkeleydb/libdb
https://github.com/google/leveldb
https://github.com/facebook/rocksdb

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

• PonyORM: 565 µs
• Level-DB: 122 µs

With this database architecture, the cost of the pure I/O synthesis algorithm is equal
to the one of the lookup, thus ~100µs. Also Level-DB automatically caches results
thus querying the same hash twice (which happen often in a single binary) lower
the lookup to 62.9 µs. In terms of disk size, 370M entries weight approximately
14GB which represent a ~27M entries per GB in average.

Expression Linearization

We also considered using expression linearization25 to represent expressions as
normalized equations when they used supported operators (+, -, *). The possibility
to linearize every expression before adding them to the table was added to the
generation process. For that, SymPy26 a Python library for symbolic mathematics,
has been chosen.

Original Linearized

(a-(c-a)) 2*a-c

((a-b)-(a+a)) -a-b

(-b-(b+c)) -2*b-c

((a+a)--a) 3*a

(cˆ(b+c)) cˆb+c

(-a-(a+a)) -3*a

(b-((c-b)-(b+b))) 4*b-c

(-a-((b+b)+(b+c))) -a-3*b-c

(-a-((a+a)+(b+b))) -3*a-2*b

(-c-((c+c)+(c+c))) -5*c

... ...

As these examples show, it also introduces constants to expressions! That aspect
lacks in our derivation mechanism and is an issue in synthesis in general. On
25https://www.wikiwand.com/en/Linearization
26https://www.sympy.org/en/index.html

Robin David 13

https://www.wikiwand.com/en/Linearization
https://www.sympy.org/en/index.html

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

expressions it managed to linearize, the gain in node size is ~34% and the string
representation ~63% (as it reduces parentheses).

In terms of time, linearizing expressions during table generation completely annihi-
lates all performances as Sympy is not designed to be as computation intensive and
is purely in python (65h instead of 3h). In terms of results because of operators
like (|, &, ˆ) very few expressions can be linearized. The impact on synthesized
expressions is thus rather low. Still, it allowed synthesizing function of the Syntia
benchmark to their most compact form:

((((((0xE640327FE72F517E+ ((((((((0xABEA5477E23EB83+ (((((((0x6F648D9353ED62EA
- ((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))))
| ((((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))
+ 0x909B726CAC129D15))) * 0xABEA5477E23EB83)) + ((((d * 0xABEA5477E23EB83))
+ 0xCDFE6C00C685741)))))) + ((0xABEA5477E23EB83+ (((((((0x6F648D9353ED62EA
- ((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))))
| ((((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))
+ 0x909B726CAC129D15))) * 0xABEA5477E23EB83)) + ((((d * 0xABEA5477E23EB83))
+ 0xCDFE6C00C685741)))))))) - ((0xABEA5477E23EB83 * (((0x6F648D9353ED62EA
- ((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))))
| ((((0x2F86971688B5F656 * (((((((0x6F648D9353ED62EA - ((((((d *
0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))))
| ((((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))
+ 0x909B726CAC129D15))) * 0xABEA5477E23EB83)) + ((((d * 0xABEA5477E23EB83))
+ 0xCDFE6C00C685741)))))) + 0x2136E4D958253A2C))))))) + ((((((d *
0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) + (((((0x6F648D9353ED62EA
- ((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))))
| ((((0x2F86971688B5F656 * (((((((0x6F648D9353ED62EA - ((((((d *
0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))))
| ((((((((d * 0xABEA5477E23EB83)) + 0xCDFE6C00C685741)) * 0x17C34B8B445AFB2B))
+ 0x909B726CAC129D15))) * 0xABEA5477E23EB83)) + ((((d * 0xABEA5477E23EB83))
+ 0xCDFE6C00C685741)))))) + 0x2136E4D958253A2C))) * 0xABEA5477E23EB83))))))))
* 0x17C34B8B445AFB2B)) + 0x909B726CAC129D15))

To:

0x3 * d

Besides the low number of expressions that can be linearized with, SymPy also tends
to introduce power expression (e.g.: x**2) however this operator is not supported

Robin David 14

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

by SMT and thus Triton (and most ASM semantics). Hence, when it happens it has
to be expanded to its unrolled form, generating often suboptimal results. Better,
leveraging symbolic reasoning as done by SymPy to better improve synthesis is left
as future work.

Expression Learning

What if an expression to synthesize is smaller than the one synthesized by the I/O
synthesizer? It can occur because the generation process is bounded, it generates
expression with limited variables/operators, plus it does not involve any constants.
If that happens, we can replace the expression in the database by the one given in
input which is smaller. In this case, the expression will not be synthesized but it
will improve the database.

We implemented a learning mechanism enabling to improve the synthesizer by
learning new smaller expressions.

The table below shows multiple examples taken from the benchmark binaries where
table content was improved with new expressions learned.

Expression in DB Learned expr. from binary

~(c - e) - (-c | e) e + (~e | -c)

((e * e) + e) + (~e) (e * e) - 0x1

(~e + e) + (~(-e)) 0xFFFFFFFFFFFFFFFE + e

(e - d) - (~d)) | ~d ~d | (e + 0x1)

(~b + b) + (~(-b)) b - 0x2

(~b + b) + (e & b) b + (~b | e)

(~a + a) + (~(-a)) ~(0x1 - a)

(~d + d) + (a & d) (~d | a) + d

((d * d) - d) - (~d) ~(0xFFFFFFFFFFFFFFFE - (d * d))

(~(-c)) + (~(c + c)) 0xFFFFFFFFFFFFFFFE - c

(~b + b) + (d ˆ b) (b ˆ d) - 0x1

(-d) - (d * d) ~d * d

(~d + d) + (-d & c) ((d - 0x1) | c) - d

Robin David 15

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Expression in DB Learned expr. from binary

(~(-a) + (~(a + a)) ~(a + 0x1)

... ...

Most expressions learned involve constants27. This learning mechanism is thus a
step forward to address the constant issue in synthesis. Generalizing such learning
mechanism would greatly improve synthesis potency and maybe enable learning
other classes of programs (e.g. with branches).

V. Benchmarks

To assess the algorithm Syntia benchmark and custom Tigress 2.128 based bench-
marks were used. Each benchmark was composed of a single binary containing 500
obfuscated functions with some defined Tigress passes. Test benchmarks are:

• Syntia: EncodeArithmetic (MBA and arithmetic diversification) and Encode-
Data (data encoding);

• custom_EA: EncodeArithmetic (but larger expressions to obfuscate);
• custom_VR_EA: Virtualize (virtualization of the CFG) and EncodeArithmetic;
• custom_EA_ED: EncodeArithmetic EncodeData (but way larger expressions).

These benchmarks are open-source and available on github29 (as part of the aca-
demic publication). After publication the first thing performed was switching to
Triton 0.8 which brought various improvements and especially with regard to perfor-
mances30. Without changing anything to synthesis time benchmarks on custom_EA
switched from:

Time DSE:0m36s Synthesis:1m9s Total:106.42s (Mean:0.21s/func)

To:

Time DSE:0m39s Synthesis:0m28s Total:68.39s (Mean:0.14s/func)

27other expressions shows that optimality of generation is fallible
28http://tigress.cs.arizona.edu/
29https://github.com/werew/qsynth-artifacts
30https://blog.quarkslab.com/triton-v08-is-released.html

Robin David 16

http://tigress.cs.arizona.edu/
https://github.com/werew/qsynth-artifacts
https://blog.quarkslab.com/triton-v08-is-released.html

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

In addition, various improvements were brought to Triton and the synthesis algo-
rithm improving overall performances and widening the gap with paper results.
Two of them have to do with the low-level SMT representation of formulas by Triton.
Thus these improvements profits to all Triton users by reducing SMT expressions
sizes. Detailed improvements are:

• New: New implementation and migration to Triton 0.8. Use Top-Down search
strategy and same tables as in the paper (Pickle files at that time);

• Mul: Triton AST semantic improvement on MUL operations to avoid extracts
of (un)signed extensions (PR#909);

• Concat: Improve folding of constant concatenation (Issue #907);
• LDB: Switch to Level-DB database mechanism (using the same tables as the
paper, thus 2,412,513 entries);

• 370M: Switch to a 370 million entries database (x153 more).

The table below shows performances starting from paper results up to the latest
improvements all combined (each line includes improvements of previous lines).

Figure 4: Incremental benchmarks results from original publication to latest
optimizations.

Robin David 17

https://github.com/JonathanSalwan/Triton/pull/909
https://github.com/JonathanSalwan/Triton/issues/907

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

These results deserve some explanations. First, accuracy drops from paper imple-
mentation to the new one as we used the Top-Down to the benefits of computation
time which is divided by 2.6 on custom_EA. Paper algorithm was more aggressively
replacing sub-AST at the cost of computation time. To our opinion the gain in
computation time is worth it. Optimizations Mul and Concat does not improve
simplification but as AST are reduced to a more canonic representation processing
them takes less time. This is especially true for VR-EA where Concat divide by
two synthesis time. Similarly, Mul almost divide by two synthesis time for EA-ED
reducing from 2h19m to 1h34m. One may notice that these two simplifications
make the simplification potency to slightly drop. The reason is that synthesis was
simplifying such unoptimized expressions while after plugging them in symbolic
execution they come out already simplified from Triton. Consequently synthesis
does not simplify any further. The switch from pickle tables loaded in memory
to Level-DB does bring a significant improvement of the synthesis time (which is
surprising as we could expect objects in RAM would be accessed faster). For VR-EA
synthesis time is divided by two. Then as expect a table of 370M entries brings an
improvement on the simplification (but not with a huge margin). The average size
of synthesized expression drops on all our benchmarks and full synthesis improves
for some of them.

VI. Implementation in QSynthesis

The implementation made in Python called QSynthesis is also integrated with your
in-house time-travel debugger called QtraceDB described in a previous blogpost31.
Thus it can equally work with or without trace support as long as instruction can be
symbolically executed by Triton. The input of the synthesizer is basically a Triton
AST regardless of where it comes from.

QSynthesis is now open-source and available on Github.

Reassembly

The ultimate goal of deobfuscation is being able to regenerate a runnable unobfus-
cated program. To this end we need to regenerate assembly from deobfuscated
triton ASTs. Thankfully, Arybo32 support converting triton ASTs to its internal rep-

31https://blog.quarkslab.com/exploring-execution-trace-analysis.html
32https://github.com/quarkslab/arybo

Robin David 18

https://github.com/quarkslab/qsynthesis
https://blog.quarkslab.com/exploring-execution-trace-analysis.html
https://github.com/quarkslab/arybo

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

resentation which itself can be translated to LLVM-IR. At the top of it, it provides
utility functions to reassemble LLVM-IR to assembly. Under the hood it is using the
llvmlite33 Python binding. As such, Qsynthesis uses Arybo as a dependency for
reassembly. There are few limitations e.g.: only expression involving register can
be synthesized (namely memory can’t be used).

The example below shows an end-to-end simple example taken from YANSOllvm
where we synthesize a function executed symbolically (without trace), back to
reassembly and then patched back in the ELF using LIEF34.

The video is available: here.

IDA Integration

Qsynthesis has also been integrated in IDA, to take benefit of all its features. It has
been integrated in Qtrace-IDA our Time-Travel-Debugger to visualize traces, but it
has also been designed to work as a standalone plugin. In the latter case, it does
not take advantage of any trace information. Solely the later has been published as
our dynamic tracing framework is not open-source35. That plugin allows having a
fine grain control on the synthesis as it enables synthesizing a given operand just
by selecting it. It is also possible to visualize an expression dependencies as an
AST tree using IDA graph features. We also can directly reassemble synthesized
expressions back in the binary and having a direct overview of the result. The video
below shows a simple example where we reassemble a synthesized function into a
fresh one.

The video is available: here.

VII. Real-World Examples

YANSOLLVM

While all benchmarks were made on Tigress we decided to focus on YANSOllvm36

which has been released last year, and is another derivative of Obfuscated LLVM. It
includes a bunch of protection and especially ObfuscateConstant and VM that makes

33https://github.com/numba/llvmlite
34https://lief.quarkslab.com/
35Hopefully it will be at some point.
36https://github.com/emc2314/YANSOllvm

Robin David 19

https://www.youtube.com/watch?v=NPJSrZrKBl8
https://www.youtube.com/watch?v=AwZs56YajJw
https://github.com/numba/llvmlite
https://lief.quarkslab.com/
https://github.com/emc2314/YANSOllvm

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

uses of MBAs to replace obfuscate atomic operations like (+, -, ˆ). For instance
ObfuscateConstant replaces zeroes by:

Obfuscated zero constant

((~x | 0x7AFAFA69) & 0xA061440) + ((x & 0x1050504) | 0x1010104) ==
185013572
p1*(x|any)**2 != p2*(y|any)**2

x + y = xˆy + 2*(x&y)

x ˆ y = (x|~y) - 3*(~(x|y)) + 2*(~x) - y

Similarly VM replaces basic operations by the obfuscated ones:

Operator Obfuscated expression

x + y (x|~y) + (~x&y) - (~(x&y)) + (x|y)

x - y x + ~y + 1

x « y same

x >a y same

x >l y same

x & y -(~(x&y)) + (~x|y) + (x&~y)

x | y (xˆy) + y - (~x&y)

x ˆ y x + y - ((x&y)«1)

The first obfuscation ObfuscateConstant37, transform zeroes with MBAs but also
apply constant splitting which value is determined with an arithmetic operation on
two pseudo-random values. This later transformation is very effective in masking
constants used for instance in the first scheme. As shown below without splitting
schemes are rather straightforward to recognize:

37https://github.com/emc2314/YANSOllvm/blob/master/lib/Transforms/Obfuscate/ObfuscateConst
ant.cpp

Robin David 20

https://github.com/emc2314/YANSOllvm/blob/master/lib/Transforms/Obfuscate/ObfuscateConstant.cpp
https://github.com/emc2314/YANSOllvm/blob/master/lib/Transforms/Obfuscate/ObfuscateConstant.cpp

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Figure 5: Main MBAs used by YANSOLLVM

With constants splitted (which is systematically used) MBAs are less recognizable
but we still break all the MBA easily as the semantic does not change and it is still
a zero constant. In this context, synthesis is more generic and allows synthesizing
complex expressions but obfuscated constants can also be broken with symbolic
execution. In this latter case the principle is finding its value v by evaluation and
determining wether or not other values are possible with a constraint of the form
expr∧ 6 v.

Robin David 21

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Figure 6: Obfuscated constant code and the result in QSynthesis

The VM transformation pass works by opportunistically replacing arithmetic op-
erations mentioned here above by a call to a function doing the operation. The
dispatching method is thus systematically a call, no switch, no virtual program
counter (VPC), no bytecode per se. In that sense the VM is rather simple in com-
parison to the possibilities offered by Tigress 38 or other obfuscators. Still, VM
obfuscation breaks down complex operations into simple units performing simple
operations. We successfully synthesize VM handlers obfuscated with MBAs into
their true original operation. The image shown below shows the reassembled and
patch version of the ADD handler of a test program.

38https://tigress.wtf/virtualize.html

Robin David 22

https://tigress.wtf/virtualize.html

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Figure 7: Qsynthesis IDA integration example with full reassembly.

While these two obfuscations do not hold against synthesis, YANSOllvm is a very de-
cent obfuscator and all transformations combined together makes it rather difficult
to identify locations where to perform the synthesis.

Warbird Framework

Microsoft is using a framework called Warbird to obfuscate various components
and notably KPP. Alex Ionescu discussed this obfuscator at Ekoparty39, and Airbus
Seclab studied its VM engine40. A colleague pinpointed me the PatchGuardInit
function of the Windows kernel for being somewhat obfuscated. The function is
rather big with 5231 basic blocks where many of them seem to contain overly
complex arithmetic operations on pseudo-random values generated by rtdsc. We
do not know the exact obfuscation nature nor the exact purpose of these blocks but
operations seem at least diversified and purposely expanded.

39https://youtu.be/gu_i6LYuePg?t=987
40https://github.com/airbus-seclab/warbirdvm#id11

Robin David 23

https://youtu.be/gu_i6LYuePg?t=987
https://github.com/airbus-seclab/warbirdvm#id11

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Figure 8: Basic block sample in PatchGuardInit.

Synthesis somewhat works on these basic blocks and simplifies the whole function.
In addition to anti-debugging schemes other obfuscations seems to have been
applied as it also seems unrolled. We did not investigated further. Arithmetic
diversification seem’s rather easy to address in comparison to the VM protection
that Warbird also provides. Still, it shows the efficiency of synthesis to clean a bit
the instructions.

Robin David 24

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

Figure 9: Synthesis result on the basic block of PatchGuardInit.

One can observe that the reassembly further simplified the synthesized AST by
removing parts which were constant. When reassembling we thus also takes
advantage of compiler optimizations to simplify even more the expressions. Note
that we could have done it by applying a post-processing pass on the AST.

Messaging Application

Messaging application are well known for being obfuscated. Previous research has
been made on one of them by another researcher41,42. We looked at the messaging
application and especially libclient.so in version 10.85.5.0 of the app in ARM64.
Previous works have shown that it makes use of dataflow obfuscation and more
specifically MBAs. One of them is an obfuscated version of 0x99DB8D4C50945260 ^
bss_val1 & ~0x3 containing 165 nodes. The synthesis algorithm managed to divide
its size by two (~75 nodes) but not to recover the original expression. The reason
is the presence of the constant which hinders the synthesis. Dedicated approaches
like Arybo managed to solve it43. By crawling the code, we found similar structures
41https://hot3eed.github.io/2020/06/18/snap_p1_obfuscations.html
42https://hot3eed.github.io/2020/06/22/snap_p2_deobfuscation.html
43https://pastebin.com/xBvSF05J

Robin David 25

https://hot3eed.github.io/2020/06/18/snap_p1_obfuscations.html
https://hot3eed.github.io/2020/06/22/snap_p2_deobfuscation.html
https://pastebin.com/xBvSF05J

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

which if not MBA are at least purposely complex. On the example given in the figure
below, we were able to reduce the expression of X0 on the return address by 24%.
Yet, we did not recovered the original expression if any.

Figure 10: MBA example

As another example, the basic block shown below, compute the register X0 given as
argument to the function sub_9B7298 at the bottom. The algorithm synthesized it as
the constant 0x7b2 which appear to be true as the register X8 at instruction MOV

Robin David 26

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

X20, X8, #0x7B2 gets synthesized to 0. Thus whole computation seems essentially
useless. On this use-case synthesis is very effective. Yet, obfuscation is greatly
applied on this library, deobfuscating the whole app would require addressing the
other kinds of obfuscations and the various blends performed. Doing so would
require far more work.

Figure 11: QSynthesis synthesized X20 which is the constant value 0x7B2.

VIII. From Deobfuscation to Software Diversification

So far this whole research was turned toward reducing the size of expressions
manipulated to generate optimized instructions. The goal of the synthesis oracle
fitness function is returning a new expression solely if it was smaller than the

Robin David 27

Greybox Program Synthesis: A New Approach to Attack Obfuscation 2021-04-08

one in input. However, this function can represent any objective. As such, we
can turn instantly the synthesizer into an obfuscating program synthesizer by
flipping the comparison being made by the oracle. We can thus recursively and
infinitely diversify programs. The exhaustiveness of tables, entirely determines the
reversibility of the process.

IX. Conclusion

This whitepaper intended to provide a quick introduction of program synthesis,
how we do use it at Quarkslab, and how we are improving it incrementally to make
it more and more efficient. We explained in greater details (than the paper) our
"greybox synthesizer" inner working, its search strategies, lookup tables working
and various extensions like linearization, static way to work or else the learning
mechanism. We have also shown efforts made to make it scale and we have shown
how it performs on real targets. Yet, the approach is not perfect, there are many
roadblocks remaining, and we still have various experiments to perform to continue
improving it. Among them, constants is a huge one that we want to address by
coupling synthesis with other approaches and by circumventing techniques44. Also,
at the moment all input variables are of the same size and output is also of the same
size. We would like to synthesize expressions with heterogeneous sizes.

Still, we show through this implementation and integration one of the first imple-
mentations that recovers deobfuscated instructions reassembled back in the code
as an end-to-end process. It has now gained a level a maturity allowing us to use it
in day-to-day reverse tasks (hopefully facilitating Quarkslab mates life ;)).

44https://blog.regehr.org/archives/1636

Robin David 28

https://blog.regehr.org/archives/1636

	I. Introduction
	II. Background
	a. Program Synthesis Primer
	b. Previous Research

	III. Synthesis Algorithm
	Original Search Strategy
	Top-Down Search Strategy
	Top-Down & Bottom-Up Strategy
	Visualizing Simplification
	Beyond Dynamic And Symbolic Execution

	IV. Table Generation
	JITTing Expression Evaluation
	Generation Throughput

	Google Level-DB Against Pony-ORM
	Expression Linearization
	Expression Learning

	V. Benchmarks
	VI. Implementation in QSynthesis
	Reassembly
	IDA Integration

	VII. Real-World Examples
	YANSOLLVM
	Warbird Framework
	Messaging Application

	VIII. From Deobfuscation to Software Diversification
	IX. Conclusion

