
Robin David <rdavid@quarkslab.com>

Streamlining Firmware Analysis with
Inter-Image Call Graphs and

Decompilation

1

WHOAMI

Whoami:

■ Security Research @ Quarkslab (since 2017)

■ Trainer

■ R&D Lead / Manager

Research Topics:

○ Obfuscation / Deobfuscation

○ Fuzzing / Symbolic Execution

○ Graph based ML

○ Firmware Analysis

2

Firmware Analysis

4

What ?

● “Flat” firmware: self-contained
firmware within a memory segment
(low-level firmwares)

● “Structured” firmware: made of a
kernel and a filesystem (usually using
separate partitions ubifs, ext4)

Why ?

⇒ For an efficient firmware recon

Use-cases:
○ Vulnerabilities research

○ Artifacts finding (private keys, build files,
symbols)

○ Compliance checks (patch, fw sigs..)
○ Bill-of-Materials extraction

Today’s focus !

Problematics

5

Problematics

6

Today’s focus !

⇒ Issue: finding the needle in the “haystack
 of binaries” (for vuln, patch analysis etc..)

 ⇒ Goal: Mapping dependencies between
 executables (and also files) as a graph

 ⇒ How: Leveraging existing tools and our binary
 analysis tooling (no rocket science but efficient and
 automated tooling)

We extracted 1000
 executables and files
 Now what ??

Graph Visualization For Vuln Research

8

Running example avec une
fonction (dans une lib).

Reversing Use-Cases:

● Which binaries are calling this exported
library function ? (with which parameters)

● What programs:
○ opens this file ?
○ do interprocess comms ?
○ interact with a service ?

e.g: “Who is using EVP_Verifyfinal ?”

useful to check firmware signature
mechanisms …

Contribution: Fractal Graph Representation Approach

9

“Nested style graph”

Level 1: Firmware Call Graph
(all binaries)

Level 2: Program Call
Graph with
Decompilation

Level 3: Program in a
disassembler: CG
and CFGs

Inter-Image
Call Graph

(Level 1)

10

Inter-Image Call Graph

Definition

An inter-image call graph is a directed graph representing call
dependencies between functions regardless of theirs executable location.
(nodes are functions, and edges call from one function to the other).

Computation requirements:

○ We assume a filesystem is his “running state” (where all partitions are mounted)

○ Requires taking in account fs peculiarities (symbolic links etc..)

○ On “Unix-like” system, it somewhat requires doing what ld.so does.

⇒ No disassemblers enables computing IMG-CG and resolving cross-references
across executables and libraries.

11

IMGCG Algorithm

12

Resolving phase, what could go wrong ?
● Collision (multiple libraries exposing the

same symbol)

● Symbol imported but exposed by no
libraries (e.g: httpd modules using
logging function of httpd)

Illustrer les
différents soucis

bins = []
G = DiGraph()

create nodes
for bin in iter(filesystem):
 exe = disassemble(bin)
 bins.append(exe)
 G.add_nodes(calc_cg(exe))

add all edges
for exe in bins:
 for frm, to in calc_cg(exe):
 if is_imported(to):
 real_to = resolve(to, bins)
 G.add_edge((frm, real_to))
 else:
 G.add_edge((frm, to))

Algorithm (in pseudo code)

⇒ Calls on PLT are directly bound on the
target function in the library.

Implementation Software Stack)

13

Binary exporters Numbat
(Python API to

database format)

Disassemblers

firmware executables

Quokka

indexer

generates

uses generates

Database
(graph DB in sqlite)

⇒ The whole process is fully automated!

ou
r c

on
tri

bu
tio

n

https://drive.google.com/file
/d/1SI_ncKxl4h984BnWdddN
NX4Y9RWXBsPb/view?usp=sh
aring

15

Sourcetrail (in a Nutshell)

Purpose: Source code Explorer

Bio:
○ open-source !
○ developed by CoatiSoftware
○ but abandoned

Indexers:
○ C / C++
○ Java
○ Python

⇒ Database format is open-source !
 (but strongly source code oriented)

https://drive.google.com/file/d/1SI_ncKxl4h984BnWdddNNX4Y9RWXBsPb/view?usp=sharing
https://drive.google.com/file/d/1SI_ncKxl4h984BnWdddNNX4Y9RWXBsPb/view?usp=sharing
https://drive.google.com/file/d/1SI_ncKxl4h984BnWdddNNX4Y9RWXBsPb/view?usp=sharing
https://drive.google.com/file/d/1SI_ncKxl4h984BnWdddNNX4Y9RWXBsPb/view?usp=sharing
https://drive.google.com/file/d/1SI_ncKxl4h984BnWdddNNX4Y9RWXBsPb/view?usp=sharing
https://docs.google.com/file/d/1SI_ncKxl4h984BnWdddNNX4Y9RWXBsPb/preview

Sourcetrail ⇔ Numbat = 3

16

Main Idea: Database format is
“somewhat” open.

⇒

So anyone can create arbitrary databases
and make any data to fit into!*1

*1 former colleague Romain Thomas idea *2 implemented by Sami Babigeon

Numbat provides a Python
API to do it !*2

⇒

Goal: Bringing back reverse-engineering tooling
into source-based tools.

Demo
navigating a firmware

(small Netgear RAX30 router)

17

18

Use-Case: libcurl

Fetching an URL

Command line Using the library in C

$ curl URL
curl_easy_setopt(p1, CURLOPT_URL, url);
curl_easy_setopt(p1, CURLOPT_SSL_VERIFYHOST, 1);
curl_easy_setopt(p1, CURLOPT_SSL_VERIFYPEER, 1);se

cu
re

in
se

cu
re

$ curl --insecure URL
curl_easy_setopt(p1, CURLOPT_URL, url);
curl_easy_setopt(p1, CURLOPT_SSL_VERIFYHOST, 0);
curl_easy_setopt(p1, CURLOPT_SSL_VERIFYPEER, 0);

As given by curl.h: CURL_SSL_VERIFYHOST = 81 CURL_SSL_VERIFYPEER = 64

Decompiled Executable
Visualization

(Level 2)

19

https://drive.google.com/f
ile/d/1dwp3KOtA0pTHXzd8
kYg6_C2aDKOu-iQv/view?
usp=sharing

20

Problematic

20

Can we travel decompiled code like standard source code in
Sourcetrail ? (is it achievable with Numbat?)

In most disassemblers:
● either navigate calls in a graph view
● either navigate decompiled code in

text view (and follow cross-refs one by one)

⇒ hard to have quick peek of all usages

Can’t use C indexer as decompiled code is not pure “compilable C”.

https://drive.google.com/file/d/1dwp3KOtA0pTHXzd8kYg6_C2aDKOu-iQv/view?usp=sharing
https://docs.google.com/file/d/1dwp3KOtA0pTHXzd8kYg6_C2aDKOu-iQv/preview
https://docs.google.com/file/d/1dwp3KOtA0pTHXzd8kYg6_C2aDKOu-iQv/preview

Retrofitting Decompiled Code in Sourcetrail

21

● Xrefs requires tokenizing the whole source code
○ IDA API not of any help (⇒ more of a hack at the moment)

● Decompiled code on whole the IMG-CG do not scale
(too massive for sourcetrail’s schema model in sqlite)

Disassembl
y

Quokka
exporter

generates

Database

indexe
r

quokka

 f
ile

decom
p

 f
ile

ELF

Demo
(navigating decompiled)

22

Program
in a Disassembler

(Level 3)

23

24

Your Favorite Disassembler: HERE

Call Graph at decompiled level is helpful, but will
never fulfill what can be done within a disassembler.

○ Handling all cases where recovering functions is difficult
○ Manipulating data (and data-xrefs)
○ Scripting API
○ everything that can be done within your disassembler

⇒ Link every representations (by tweaking sourcetrail UI)

Deepest analysis level

Demo

25

Beyond
Structured
Firmwares
(standard filesystem..)

26

27

 Can apply same approach to any context
 where multiple binaries are somewhat linked
with each other.

Applying Similar
Methodology

dyld shared cache
(on Apple devices)

Dyld Shared Cache Primer

28

Set of dynamic libraries
pre-linked together AOT
into a single file. Then
shared and used by
running applications.

Mapping problematics:
● stub libraries (not included in

cache e.g private framework)
● function re-exports

(LC_REEXPORT_DYLIB)
● symbol coalescing
● stub-island jump mechanism

Disassembly

Database

dyld
indexe

r
quokk

a

 f
ile

.ipsw
file

Quokka
ipsw (split)
(blacktop)

(for all FS executables)

dyld
shared-cache

https://blacktop.github.io/ipsw/

Example

29

Dyld size: 3.4 Gb
Executables: 2505
Nodes: 13.1 millions
Edges: 62.2 millions

⇒ Reaching DB limits

Conclusions
&

Takeaways

31

Conclusion & Takeaways

32

What:
○ IMG-CG representation

(inter-image call graph)

Why:
○ better data-visualization

“having the big picture”

○ expanding reversing to
multiple binaries all at once

 ⇒ Gaining RE efficiency

Trying to bridge reversing into
source code audit tools.

⇘

○ nested graph analysis methodology
(Firmware ↦ one binary ↦ disassembler)

Using another disassembler is doable

○ Used existing of-the-shelf tools to do it:

(+ + +) = 🚀

Getting Further

33

Anything that can be
modeled as relationships

or a graph !

Current indexers (IMG-CG, decomp, dyld):

⇒ still in a PoC state (under integration in Pyrrha, shall be published soon™ (June maybe..))

⇒ could go way further ! (what if we also incorporate data and types ?)

New use-cases:
(thanks to Numbat & Sourcetrail)

○ binaries ⇔ kernel modules (syscalls)
○ Inter-process communications (dbus,

Binder, XPC…)
○ links between ARM security-levels (e.g:

kernel and TAs interactions)
○ Permissions modeling (SELinux ..)
○ Your use case..

Thank you

Me:
rdavid@quarkslab.com

@RobinDavid

robin-david-17304685

Quarkslab:
contact@quarkslab.com

@quarkslab

www.quarkslab.com

34

Some Statistics

35

Infos
Size 161 Mb

#files 1746

#Executables 111

#Libraries 318

#kernel modules 136

⇒ On Netgear RAX 30 router in version 1.0.7.78

Time Size
Mean Total (1 cpu) Total (8 cpu) Mean Total

Disassembly (.i64) 25s 4h10m 29min18s 1.8 Mb 1.1 Gb
Quokka 0.77s 438s 68s 460 Kb 255 Mb

Binexport 0.85s 481s 72s 661 Kb 366 Mb
Decompilation 19s 3h03 37m50s 387 Kb 214 Mb

Indexing 1.9s 18m30s 3m28s 1.5 Mb 831 Mb
Total: 7h38m 1h9m Total*: 1.27 Gb

*(without the .i64 and only Quokkas)

Favor on-demand creation
rather than systematic DB
creation

565

